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Motivation

Homotopical interpretation

X : Type is a space

* p:a=yxb isapath

* Paths between paths p =,-,5) q
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* p:a=yxb isapath

Paths between paths p =,-,p) q

Transport transport?(p, =) : P(a) - P(b)

Dependent paths transport” (p,u) =ppy v

How do you formalize results from Algebraic Topology into HoTT?
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Motivation

Homotopical interpretation
X : Type is a space
* p:a=yxb isapath

Paths between paths p =,-,p) q

Transport transport?(p, =) : P(a) - P(b)

Dependent paths transport” (p,u) =ppy v

How do you formalize results from Algebraic Topology into HoTT?
Can we get some intuition?
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Let's formalize an exercise from Hatcher!
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11. If M, denotes the closed orientable surface of genus g, show that degree 1 maps
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Let's formalize an exercise from Hatcher!

11. If M, denotes the closed orientable surface of genus g, show that degree 1 maps
M,— M), existitt g > h.

* Closed orientable genus g surface * Covering spaces

* Degree  Homology
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Let's formalize an exercise from Hatcher!

11. If M, denotes the closed orientable surface of genus g, show that degree 1 maps
M,— M), existitt g > h.

* Closed orientable genus g surface * Covering spaces

* Degree * Homology

No success, but formalized some parts of algebraic topology
 Classification of Covering Spaces

e Canonical Change of Basepoint

EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY



Classification of Covering Spaces




Classification of Covering Spaces

*already shown in [Buchholtz, Van Doorn, Rijke (2018)]




Covering Spaces in HOTT
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Covering Spaces in HOTT
Hou (Favonia) and Harper (2016)

» Definition 1. A covering space of a type (space) X is a family of sets indexed by X.
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Covering Spaces in HOTT
Hou (Favonia) and Harper (2016)

» Definition 1. A covering space of a type (space) X is a family of sets indexed by X.

F:X — Set
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Covering Spaces in HOTT

Hou (Favonia) and Harper (2016)

» Definition 1. A covering space of a type (space) X is a family of sets indexed by X.

Different from usual definition F:X — Set
* instead of p : X = X work directly with fibers F(x) := p~1(x)

S easier, replace propositional (=) by judgmental (=) equalities
* no mention of continuity / local, point-set topological properties

& automatic! ‘bad’ constructions impossible in HOTT
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Covering Spaces in HOTT

Hou (Favonia) and Harper (2016)

» Definition 1. A covering space of a type (space) X is a family of sets indexed by X.

Different from usual definition F:X — Set
* instead of p : X = X work directly with fibers F(x) := p~1(x)

S easier, replace propositional (=) by judgmental (=) equalities
* no mention of continuity / local, point-set topological properties

& automatic! ‘bad’ constructions impossible in HOTT

A posteriori justification
* Right notion of equality F, =F, implies h:][l,.xF(X) = F,(X)

* Prove classical theorems!
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Classification
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Classification

For a connected, pointed type (X, xg)

N
\ 4

F H

pointed, connected subgroup m, (X, x¢)

covering space of X i.e. predicate 1, (X, xy) — Prop

closed under group operations

EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY



Classification

For a connected, pointed type (X, xg)

N
\ 4

F H
pointed, connected subgroup m, (X, x¢)

covering space of X i.e. predicate 1, (X, xy) — Prop

closed under group operations

From covering space to subgroup

F +— Hg, loopspinX for which there exists a
loop in the covering space lying over p

e Surjective via the universal covering space

* Injective via the lifting criterion
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Classification

For a connected, pointed type (X, xg)

N
\ 4

F H

pointed, connected subgroup m, (X, x¢)

covering space of X i.e. predicate 1, (X, xy) — Prop

closed under group operations

From covering space to subgroup

F +~— Hp, loopspinX for which there exists a
loop in the covering space lying over p

e Surjective via the universal covering space | Hou (Favonia) and Harper (2016)

* Injective via the lifting criterion
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Lifting Criterion in HOTT

Hatcher

Proposition 1.33. Suppose given a covering space p . (X, Xy)— (X, x,) and a map
f:(Y,yy)— (X, x,) with Y path-connected and locally path-connected. Then a lift
F1(Y,v0)—(X,%,) of f existsiff f,(m,(Y,¥y)) € py (1 (X, %))

fy f)
%y
.
y' o, Sy’ f)
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Lifting Criterion in HOTT

Hatcher

Proposition 1.33. Suppose given a covering space p . (X , Xo)— (X, x,) and a map
f:(Y,yy)— (X, x,) with Y path-connected and locally path-connected. Then a lift
F1(Y,v0)—(X,%,) of f existsiff f,(m,(Y,¥y)) € py (1 (X, %))

fy fly L .
Definitions needed in HOTT
) Yo fy e pointed covering space
/ lf’ * total space and the covering map
f)/, f(J’) o |i i .
Y N f : : lift of @ pointed map to the covering space
%0 4 Xo fY
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Definitions in HOTT

* Pointed covering space of (X, x)

family F : X — Set

with a point uy: F(xg) f. F(xq)
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Definitions in HOTT

* Pointed covering space of (X, x)
family F : X — Set
with a point uy: F(xg)

* Total space
Xy F with point (x,; ug)

* Covering map

pri:2xF - X
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Definitions in HOTT

* Pointed covering space of (X, x)
family F : X — Set Xy F
with a point uy: F(xg) 72 F(xo)

)
* Total space 5
0
Xy F with point (x,; ug)

e Covering map /’/“‘.

pri:ZxF - X —
* Pointed lift of f : (Y, y,) = (X, xg)

where w : f(y,) = x, y f /’D N
O—- ’ 0
fl) ~——"

Yo V1
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Definitions in HOTT

* Pointed covering space of (X, x)
family F : X — Set
with a point uy: F(xg)
* Total space
Xy F with point (x,; ug)
* Covering map
pri:2xF - X
* Pointed lift of f : (Y, y,) = (X, xg)

where w : f(y,) = x,

f») :F(f(»)

TU/e
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Definitions in HOTT

* Pointed covering space of (X, x)
family F : X — Set
with a point uy: F(xg)
* Total space
Xy F with point (x,; ug)
* Covering map
pri:2xF - X
* Pointed lift of f : (Y, y,) = (X, xg)
where w : f(y,) = x,
fO) :F(f)

such that

transport” (w, f (o)) =r(x,) Uo

LSEE
o . X
Yo V1 f(}’1)\"'

f o)

TU/e
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Hatcher

Proposition 1.33. Suppose given a covering space p . (X, Xy)— (X,x,) and a map
f:(Y,yy)— (X, x,) with Y path-connected and locally path-connected. Then a lift
f1(Y, 90— (X,%,) of f existsiff f,(m,(Y,¥y)) € py (1 (X, %))
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Hatcher

Proposition 1.33. Suppose given a covering space p . (X, Xy)— (X, x,) and a map
f:(Y,yy)— (X, x,) with Y path-connected and locally path-connected. Then a lift
F:1(Y,p0)— (X, %)) of f exists iff £, (m,(Y,¥,)) C p, (M (X, %y)).

Lemma

Suppose given a covering space F : X — Set with point u : F(xy) over a poinfed type (X, xq)
and a pointed map f : (Y,y,) = (X, x¢) with'Y connected. Then a pointed lift f: [1,.y F(f (¥))
of f exists iff

£ (Y,50)) € (pry)- (11 (ZxF, (xoi uo)) )
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About this criterion...

fi (@1 (Y, y0))) © (pry). (7T1(2XF; (xoiuo)))
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About this criterion...
fi (@1 (Y, y0))) © (pry). (7T1(2XF; (xoiuo)))

Disadvantages
 Conceals multiple truncations ||Zq:”y0=yo||0ﬁ<(q) =7

* Forces us to work with the total space Xy F
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About this criterion...
fi (@1 (Y, y0))) © (pry). (7T1(2XF; (xoiuo)))

Disadvantages
 Conceals multiple truncations ||Zq:”y0=yo||0ﬁ<(q) =7

* Forces us to work with the total space Xy F

Can we do better?

for all loops of the form f,(p) : xq =x Xg With p : Vo =y Yo
there exists a loop from u, to uy in F lying over f,(p)
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About this criterion...
fi (@1 (Y, y0))) © (pry). (7T1(2XF; (xoiuo)))

Disadvantages
 Conceals multiple truncations ||Zq:”y0=y0||0f*(q) =7

* Forces us to work with the total space Xy F

Can we do better?

for all loops of the form f,(p) : xq =x Xg With p : Vo =y Yo
there exists a loop from u, to uy in F lying over f,(p)

transport” (£, (p), o) =r(xy) o

TU/e
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Hatcher

Proposition 1.33. Suppose given a covering space p (X, Xy)— (X, x,) and a map
f:(Y,yy)— (X, x,) with Y path-connected and locally path-connected. Then a lift
F:1(Y,p0)— (X, %)) of f exists iff £, (m,(Y,¥,)) C p, (M (X, %y)).

Lemma (version 2)

Suppose given a covering space F : X — Set with point u : F(x,) over a poinfed type (X, xq)
and a pointed map f : (Y,y,) = (X, x¢) with'Y connected. Then a pointed lift f: [1,.y F(f (¥))

of f exists iff for all loops p : y, =y Yo there exists a loop from u, to uy in F lying over f.(p),
Ie.

transport” (£, (p), o) =r(xy) o

Proof closely reflects the classical proof
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Canonical Change of Basepoint




Classical setting
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Classical setting

Path from a to b induces a change-of-basepoint isomorphism
n,(X,a) = m,(X,b)
* depends on the homotopy class of the path

* a priori, not canonical
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Classical setting

Path from a to b induces a change-of-basepoint isomorphism
n,(X,a) = n,(X,b)
* depends on the homotopy class of the path

* a priori, not canonical

HoTT

Pathp : a =y b alsoinduces a change-of-basepoint isomorphism
m,(X,a) = n,(X,b)

via transport

* Issue X connected, then only ||a =y b||, so only
Iy (X, @) = m, (X, D)

« Wanted an explicit isomorphism m,,(X,a) = m,,(X, b)

TU/e

EINDHOVEN
UNIVERSITY OF
TECHNOLOGY



Via extension by weak constancy [Hou (Favonia) and Harper (2016)]
gives canonical isomorphism, if

For all pathsp,q : a =x b
transport”n(x") (p, —) = transportnn(xx_) (q’ _)
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Via extension by weak constancy [Hou (Favonia) and Harper (2016)]
gives canonical isomorphism, if

Forces us to keep using
set-truncation

transport”n(x") (p, —) = transportnn(xx_) (q, _) ’

For all pathsp,q : a =x b
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Via extension by weak constancy [Hou (Favonia) and Harper (2016)]
gives canonical isomorphism, if

Forces us to keep using
set-truncation

For all pathsp,q : a =x b

transport”n(x") (p, —) = transportnn(xx_) (q, _) ’
equivalent to

1 (X, a) acts trivially on m,, (X, a)
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Via extension by weak constancy [Hou (Favonia) and Harper (2016)]
gives canonical isomorphism, if Forces us to keep using

set-truncation

transport”n(x") (p, —) = transportnn(xx_) (q’ _) '

1 (X, a) acts trivially on m,, (X, a)

For all pathsp,q : a =x b

equivalent to

Theorem
Let X be a type with designated point a : X.
1. If X is simply-connected, then the action of T, (X, a) on m,,(X, a) is trivial foralln = 1

2. The fundamental group 1 (X, a) is abelian if and only if the action on itself is trivial

3. If merely for all loops p,q : Q(X,a),p - q = q - p then the action of m,(X, a) on m,,(X, a) is
trivial foralln = 1

EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY



Conclusion
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Conclusion

* Formalized classification of covering spaces
* Formalized conditions for when change-of-basepoint isomorphism is canonical

* Learned how to use HoTT as a synthetic framework
* Less layers of abstraction than in classical setting
* lgnore local, point-set topological properties

| essons learned for formalization

* Work with fibers directly instead of the total space

* Remove truncations ... hot always possible
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