introduction
°

a formalised framework for choreographic
programming

luis cruz-filipe
with lovro lugovié, fabrizio montesi,
marco peressotti & robert r. rasmussen

department of mathematics and computer science
university of southern denmark

types conference
june 13th, 2023



choreographic programming
®000

choreographic programmaing, conceptually

what are choreographies?

high-level global specifications of concurrent and distributed
systems

a new programming paradigm

implementations for the local endpoints are automatically
generated

@ guaranteed to be deadlock-free

@ guaranted to satisfy the specification




choreographic programming
0®00

an example

authentication choreography

c.credentials --> ip.x;

If ip.(check x)
Then ip --> s[left]; ip --> c[left]; s.token --> c.t

Else ip --> s[right]; ip --> clright]




choreographic programming
0®00

an example

authentication choreography

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> cl[left]; s.token --> c.t
Else ip --> s[right]; ip --> clright]

local tmplementations

c : ipl!credentials; ip & {left: s?7t; right: 0 }

s : ip & {left: c!token; right: 0 }

ip: c¢?x; If (check x) Then (s(+)left; c(+)left)
Else (s(+)right; c(+)right)




choreographic programming
0®00

an example

authentication choreography

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> cl[left]; s.token --> c.t
Else ip --> s[right]; ip --> clright]

local tmplementations

c : ipl!credentials; ip & {left: s?7t; right: 0 }

s : ip & {left: c!token; right: 0 }

ip: c¢?x; If (check x) Then (s(+)left; c(+)left)
Else (s(+)right; c(+)right)

(gets tricky in the presence of recursion. . .) J




choreographic programming
0oeo

a bird’s-eye view

choreography language

endpoint projection

process calculus

compilation

executable code




introduction choreographic programming the existing formalisation new contributions conclusions
(o] [eJe] le] [e]e]e} 0000 [e]e]

a bird’s-eye view

choreography language (previous work, itp'21)

endpoint projection /\
@E@ (previous work, ictac'21)

compilation

executable code




introduction choreographic programming the existing formalisation new contributions conclusions
(o] [eJe] le] [e]e]e} 0000 [e]e]

a bird’s-eye view

choreography language (previous work, itp'21)

endpoint projection /\
@E@ (previous work, ictac'21)

compilation /—\




introduction choreographic programming the existing formalisation new contributions conclusions
o 0oeo ooo 0000 oo

a bird’s-eye view

choreography language (previous work, itp'21)

endpoint projection A/\/_\
\
@E@ \ (previous work, ictac'21)

compilation

m
@ N - (forte'23, Ipar'23, itp'23)




ntroduction choreographic programming
oooe

tributions conclusions

why bother?

choreographies are a popular topic. . .

@ active research field
@ many relevant applications

@ potential in choreographic programming




choreographic programming
oooe

why bother?

choreographies are a popular topic. . .

@ active research field
@ many relevant applications

@ potential in choreographic programming

... but there are many disturbing signs

process calculus and session types plagued by wrong proofs
o complex definitions, long proofs by structural induction

@ situation pointed out at itp'1l5

o formalization of a published journal article
o most proofs were wrong (but the theorems held)

@ big revision of decidability results in the last few years
o published proofs of both A and —A for quite a few A. ..




the existing formalisation
®00

our language

a minimal choreography language

@ value communication
o label selections (for projection)
e conditionals

e trailing procedure calls (for recursion)




the existing formalisation
®00

our language

a minimal choreography language

@ value communication
o label selections (for projection)
e conditionals

e trailing procedure calls (for recursion)

agnostic language

@ parametric on expressions and values
@ only two labels




the existing formalisation
oeo

choreographies in coq

choreographic language

@ syntax and semantics

@ progress and deadlock-freedom

@ properties of the semantics:
determinism, confluence

@ turing completeness from the
communication structure




the existing formalisation
oeo

choreographies in coq

choreographic language

@ syntax and semantics

@ progress and deadlock-freedom

@ properties of the semantics:
determinism, confluence

@ turing completeness from the
communication structure

hard, but insightful

@ motivated changes in the presentation of the semantics

@ much “cleaner” and more elegant theory

o faster to formalise than to get the original article accepted. .. |




the existing formalisation
ooe

projection

the epp theorem

o definition of a suitable process calculus

o formalisation of endpoint projection

o challenges: partial functions
(branching terms, merging, projection)

o different solutions (dedicated terms,
auxiliary types, indirect definitions)

(ictac'21

@ case explosion (partially) handled by
automation




the existing formalisation
ooe

projection

the epp theorem

o definition of a suitable process calculus

o formalisation of endpoint projection

(]

challenges: partial functions
(branching terms, merging, projection)

different solutions (dedicated terms,
auxiliary types, indirect definitions)

(ictac'21)

(]

case explosion (partially) handled by
automation

several steps could be simplified; the current formalisation is
significantly shorter than the original one :-)




new contributions
®000

the next steps

make the framework usable in practice

@ build a compiler to a “real” programming language

o identify bottlenecks and extend the theory




new contributions
®000

the next steps

make the framework usable in practice

@ build a compiler to a “real” programming language

o identify bottlenecks and extend the theory

natural candidates

o amendment procedure

@ elimination of label selections

@ possibility of livelocks (essential for services)




new contributions
0e@00

generating executable code

compilation to jolie

@ coq's extraction yields a certified
implementation of epp

@ networks must be translated to a
programming language

@ structural mapping to jolie

@ new feature: annotations in (forte'23)
communications




new contributions
0e@00

generating executable code

compilation to jolie

@ coq's extraction yields a certified
implementation of epp

@ networks must be translated to a
programming language

@ structural mapping to jolie

@ new feature: annotations in (forte'23)
communications

to certify or not to certify?

@ in principle this compilation could be formalised in coq

@ ...but the benefits of the extra work are less obvious




new contributions
fe1e1 o)

choreography amendment

authentication choreography, revisited

c.credentials --> ip.x;

If ip.(check x)

Then ip -—> s[left]; ip —-> clleft];
s.token --> c.t

Else ip --> s[right]; ip --> clright]

@ selections can be inferred automatically

@ operational correspondence (multi-step,
up to permutation)




new contributions
fe1e1 o)

choreography amendment

authentication choreography, revisited

c.credentials --> ip.x;

If ip.(check x)

Then ip -—> s[left]; ip —-> clleft];
s.token --> c.t

Else ip --> s[right]; ip --> clright]

@ selections can be inferred automatically

@ operational correspondence (multi-step,
up to permutation)

oh, the irony

@ the original theorem was wrong

@ coq led us to counter-examples and to the correct statement




new contributions
oooe

livelocks and services

authentication, now with retries

X = c.credentials --> ip.x;
If ip.(check x)
Then ip --> s[left]; ip --> c[left]; s.token --> c.t
Else ip --> sl[right]; ip --> clright]; X




he existing formalisatic new contributions
000 oooe

livelocks and services

authentication, now with retries

X = c.credentials --> ip.x;
If ip.(check x)
Then ip --> s[left]; ip --> c[left]; s.token --> c.t
Else ip --> s[right]; ip --> cl[right]; X




new contributions
oooe

livelocks and services

authentication, now with retries

X = c.credentials --> ip.x;
If ip.(check x)
Then ip --> c[left]; s.token --> c.t
Else ip --> clright]; X[s]




new contributions
oooe

livelocks and services

authentication, now with retries

X = c.credentials --> ip.x;
If ip.(check x)
Then ip --> c[left]; s.token --> c.t
Else ip --> clright]; X[s]
@ more permissive projection
s : cl!token

@ processes can be muted in recursive calls

(Ipar'23)

@ possibility for livelocks




new contributions
oooe

livelocks and services

authentication, now with retries

X = c.credentials --> ip.x;
If ip.(check x)
Then ip --> c[left]; s.token --> c.t
Else ip --> c[right]; X[s]
@ more permissive projection
s : cl!token

@ processes can be muted in recursive calls (Ipar'23)
@ possibility for livelocks

coq as a research tool

@ a lot of adaptation of old proofs (very doable)

@ many technical details that might have been overlooked




conclusions
®0

closing remarks

o a formalised framework for choreographic programming

@ compilation to jolie ~~ can be used to produce executable code

@ robust and modular theory ~~ can be used for research




conclusions

closing remarks

o a formalised framework for choreographic programming
@ compilation to jolie ~~ can be used to produce executable code

@ robust and modular theory ~~ can be used for research )

@ proof automation

o formalisation of security protocols

@ more features: non-deterministic choice, process spawning




conclusions

closing remarks

o a formalised framework for choreographic programming
@ compilation to jolie ~~ can be used to produce executable code

@ robust and modular theory ~~ can be used for research

.

@ proof automation
o formalisation of security protocols

@ more features: non-deterministic choice, process spawning

expected challenges
o full-fledged binders

@ sublanguages




thank you!



	introduction
	choreographic programming
	the existing formalisation
	new contributions
	conclusions

