
introduction choreographic programming the existing formalisation new contributions conclusions

a formalised framework for choreographic
programming

lúıs cruz-filipe

with lovro lugović, fabrizio montesi,
marco peressotti & robert r. rasmussen

department of mathematics and computer science
university of southern denmark

types conference
june 13th, 2023

introduction choreographic programming the existing formalisation new contributions conclusions

choreographic programming, conceptually

what are choreographies?

high-level global specifications of concurrent and distributed
systems

a new programming paradigm

implementations for the local endpoints are automatically
generated

guaranteed to be deadlock-free

guaranted to satisfy the specification

introduction choreographic programming the existing formalisation new contributions conclusions

an example

authentication choreography

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> c[left]; s.token --> c.t

Else ip --> s[right]; ip --> c[right]

local implementations

c : ip!credentials; ip & {left: s?t; right: 0 }
s : ip & {left: c!token; right: 0 }
ip: c?x; If (check x) Then (s(+)left; c(+)left)

Else (s(+)right; c(+)right)

(gets tricky in the presence of recursion. . .)

introduction choreographic programming the existing formalisation new contributions conclusions

an example

authentication choreography

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> c[left]; s.token --> c.t

Else ip --> s[right]; ip --> c[right]

local implementations

c : ip!credentials; ip & {left: s?t; right: 0 }
s : ip & {left: c!token; right: 0 }
ip: c?x; If (check x) Then (s(+)left; c(+)left)

Else (s(+)right; c(+)right)

(gets tricky in the presence of recursion. . .)

introduction choreographic programming the existing formalisation new contributions conclusions

an example

authentication choreography

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> c[left]; s.token --> c.t

Else ip --> s[right]; ip --> c[right]

local implementations

c : ip!credentials; ip & {left: s?t; right: 0 }
s : ip & {left: c!token; right: 0 }
ip: c?x; If (check x) Then (s(+)left; c(+)left)

Else (s(+)right; c(+)right)

(gets tricky in the presence of recursion. . .)

introduction choreographic programming the existing formalisation new contributions conclusions

a bird’s-eye view

choreography language

endpoint projection
��

process calculus

compilation
��

executable code

introduction choreographic programming the existing formalisation new contributions conclusions

a bird’s-eye view

choreography language

endpoint projection
��

(previous work, itp’21)

uu

process calculus

compilation
��

(previous work, ictac’21)

uu
uu

executable code

introduction choreographic programming the existing formalisation new contributions conclusions

a bird’s-eye view

choreography language

endpoint projection
��

(previous work, itp’21)

uu

process calculus

compilation
��

(previous work, ictac’21)

uu
uu

executable code (forte’23)

vv
uu

introduction choreographic programming the existing formalisation new contributions conclusions

a bird’s-eye view

choreography language

endpoint projection
��

(previous work, itp’21)

uu

process calculus

compilation
��

(previous work, ictac’21)

uu
uu

executable code (forte’23, lpar’23, itp’23)

vv
uu

SS

YY

introduction choreographic programming the existing formalisation new contributions conclusions

why bother?

choreographies are a popular topic. . .

active research field

many relevant applications

potential in choreographic programming

. . . but there are many disturbing signs

process calculus and session types plagued by wrong proofs

complex definitions, long proofs by structural induction

situation pointed out at itp’15

formalization of a published journal article
most proofs were wrong (but the theorems held)

big revision of decidability results in the last few years

published proofs of both A and ¬A for quite a few A. . .

introduction choreographic programming the existing formalisation new contributions conclusions

why bother?

choreographies are a popular topic. . .

active research field

many relevant applications

potential in choreographic programming

. . . but there are many disturbing signs

process calculus and session types plagued by wrong proofs

complex definitions, long proofs by structural induction

situation pointed out at itp’15

formalization of a published journal article
most proofs were wrong (but the theorems held)

big revision of decidability results in the last few years

published proofs of both A and ¬A for quite a few A. . .

introduction choreographic programming the existing formalisation new contributions conclusions

our language

a minimal choreography language

value communication

label selections (for projection)

conditionals

trailing procedure calls (for recursion)

agnostic language

parametric on expressions and values

only two labels

introduction choreographic programming the existing formalisation new contributions conclusions

our language

a minimal choreography language

value communication

label selections (for projection)

conditionals

trailing procedure calls (for recursion)

agnostic language

parametric on expressions and values

only two labels

introduction choreographic programming the existing formalisation new contributions conclusions

choreographies in coq

choreographic language

syntax and semantics

progress and deadlock-freedom

properties of the semantics:
determinism, confluence

turing completeness from the
communication structure

(itp’21)

hard, but insightful

motivated changes in the presentation of the semantics

much “cleaner” and more elegant theory

faster to formalise than to get the original article accepted. . .

introduction choreographic programming the existing formalisation new contributions conclusions

choreographies in coq

choreographic language

syntax and semantics

progress and deadlock-freedom

properties of the semantics:
determinism, confluence

turing completeness from the
communication structure

(itp’21)

hard, but insightful

motivated changes in the presentation of the semantics

much “cleaner” and more elegant theory

faster to formalise than to get the original article accepted. . .

introduction choreographic programming the existing formalisation new contributions conclusions

projection

the epp theorem

definition of a suitable process calculus

formalisation of endpoint projection

challenges: partial functions
(branching terms, merging, projection)

different solutions (dedicated terms,
auxiliary types, indirect definitions)

case explosion (partially) handled by
automation

(ictac’21)

in hindsight. . .

several steps could be simplified; the current formalisation is
significantly shorter than the original one :-)

introduction choreographic programming the existing formalisation new contributions conclusions

projection

the epp theorem

definition of a suitable process calculus

formalisation of endpoint projection

challenges: partial functions
(branching terms, merging, projection)

different solutions (dedicated terms,
auxiliary types, indirect definitions)

case explosion (partially) handled by
automation

(ictac’21)

in hindsight. . .

several steps could be simplified; the current formalisation is
significantly shorter than the original one :-)

introduction choreographic programming the existing formalisation new contributions conclusions

the next steps

make the framework usable in practice

build a compiler to a “real” programming language

identify bottlenecks and extend the theory

natural candidates

amendment procedure

elimination of label selections

possibility of livelocks (essential for services)

introduction choreographic programming the existing formalisation new contributions conclusions

the next steps

make the framework usable in practice

build a compiler to a “real” programming language

identify bottlenecks and extend the theory

natural candidates

amendment procedure

elimination of label selections

possibility of livelocks (essential for services)

introduction choreographic programming the existing formalisation new contributions conclusions

generating executable code

compilation to jolie

coq’s extraction yields a certified
implementation of epp

networks must be translated to a
programming language

structural mapping to jolie

new feature: annotations in
communications

(forte’23)

to certify or not to certify?

in principle this compilation could be formalised in coq

. . . but the benefits of the extra work are less obvious

introduction choreographic programming the existing formalisation new contributions conclusions

generating executable code

compilation to jolie

coq’s extraction yields a certified
implementation of epp

networks must be translated to a
programming language

structural mapping to jolie

new feature: annotations in
communications

(forte’23)

to certify or not to certify?

in principle this compilation could be formalised in coq

. . . but the benefits of the extra work are less obvious

introduction choreographic programming the existing formalisation new contributions conclusions

choreography amendment

authentication choreography, revisited

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> c[left];

s.token --> c.t

Else ip --> s[right]; ip --> c[right]

selections can be inferred automatically

operational correspondence (multi-step,
up to permutation)

(itp’23)

oh, the irony

the original theorem was wrong

coq led us to counter-examples and to the correct statement

introduction choreographic programming the existing formalisation new contributions conclusions

choreography amendment

authentication choreography, revisited

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> c[left];

s.token --> c.t

Else ip --> s[right]; ip --> c[right]

selections can be inferred automatically

operational correspondence (multi-step,
up to permutation)

(itp’23)

oh, the irony

the original theorem was wrong

coq led us to counter-examples and to the correct statement

introduction choreographic programming the existing formalisation new contributions conclusions

livelocks and services

authentication, now with retries

X = c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> c[left]; s.token --> c.t

Else ip --> s[right]; ip --> c[right]; X

more permissive projection
s : c!token

processes can be muted in recursive calls

possibility for livelocks
(lpar’23)

coq as a research tool

a lot of adaptation of old proofs (very doable)

many technical details that might have been overlooked

introduction choreographic programming the existing formalisation new contributions conclusions

livelocks and services

authentication, now with retries

X = c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> c[left]; s.token --> c.t

Else ip --> s[right]; ip --> c[right]; X

more permissive projection
s : c!token

processes can be muted in recursive calls

possibility for livelocks
(lpar’23)

coq as a research tool

a lot of adaptation of old proofs (very doable)

many technical details that might have been overlooked

introduction choreographic programming the existing formalisation new contributions conclusions

livelocks and services

authentication, now with retries

X = c.credentials --> ip.x;

If ip.(check x)

Then ip --> c[left]; s.token --> c.t

Else ip --> c[right]; X[s]

more permissive projection
s : c!token

processes can be muted in recursive calls

possibility for livelocks
(lpar’23)

coq as a research tool

a lot of adaptation of old proofs (very doable)

many technical details that might have been overlooked

introduction choreographic programming the existing formalisation new contributions conclusions

livelocks and services

authentication, now with retries

X = c.credentials --> ip.x;

If ip.(check x)

Then ip --> c[left]; s.token --> c.t

Else ip --> c[right]; X[s]

more permissive projection
s : c!token

processes can be muted in recursive calls

possibility for livelocks
(lpar’23)

coq as a research tool

a lot of adaptation of old proofs (very doable)

many technical details that might have been overlooked

introduction choreographic programming the existing formalisation new contributions conclusions

livelocks and services

authentication, now with retries

X = c.credentials --> ip.x;

If ip.(check x)

Then ip --> c[left]; s.token --> c.t

Else ip --> c[right]; X[s]

more permissive projection
s : c!token

processes can be muted in recursive calls

possibility for livelocks
(lpar’23)

coq as a research tool

a lot of adaptation of old proofs (very doable)

many technical details that might have been overlooked

introduction choreographic programming the existing formalisation new contributions conclusions

closing remarks

conclusions

a formalised framework for choreographic programming

compilation to jolie can be used to produce executable code

robust and modular theory can be used for research

future work

proof automation

formalisation of security protocols

more features: non-deterministic choice, process spawning

expected challenges

full-fledged binders

sublanguages

introduction choreographic programming the existing formalisation new contributions conclusions

closing remarks

conclusions

a formalised framework for choreographic programming

compilation to jolie can be used to produce executable code

robust and modular theory can be used for research

future work

proof automation

formalisation of security protocols

more features: non-deterministic choice, process spawning

expected challenges

full-fledged binders

sublanguages

introduction choreographic programming the existing formalisation new contributions conclusions

closing remarks

conclusions

a formalised framework for choreographic programming

compilation to jolie can be used to produce executable code

robust and modular theory can be used for research

future work

proof automation

formalisation of security protocols

more features: non-deterministic choice, process spawning

expected challenges

full-fledged binders

sublanguages

introduction choreographic programming the existing formalisation new contributions conclusions

thank you!

	introduction
	choreographic programming
	the existing formalisation
	new contributions
	conclusions

