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choreographic programmaing, conceptually

what are choreographies?

high-level global specifications of concurrent and distributed
systems

a new programming paradigm

implementations for the local endpoints are automatically
generated

@ guaranteed to be deadlock-free

@ guaranted to satisfy the specification
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an example

authentication choreography

c.credentials --> ip.x;

If ip.(check x)
Then ip --> s[left]; ip --> c[left]; s.token --> c.t

Else ip --> s[right]; ip --> clright]
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an example

authentication choreography

c.credentials --> ip.x;

If ip.(check x)

Then ip --> s[left]; ip --> cl[left]; s.token --> c.t
Else ip --> s[right]; ip --> clright]

local tmplementations

c : ipl!credentials; ip & {left: s?7t; right: 0 }

s : ip & {left: c!token; right: 0 }

ip: c¢?x; If (check x) Then (s(+)left; c(+)left)
Else (s(+)right; c(+)right)

(gets tricky in the presence of recursion. . .) J
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a bird’s-eye view

choreography language

endpoint projection

process calculus

compilation

executable code
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why bother?

choreographies are a popular topic. . .

@ active research field
@ many relevant applications

@ potential in choreographic programming

... but there are many disturbing signs

process calculus and session types plagued by wrong proofs
o complex definitions, long proofs by structural induction

@ situation pointed out at itp'1l5

o formalization of a published journal article
o most proofs were wrong (but the theorems held)

@ big revision of decidability results in the last few years
o published proofs of both A and —A for quite a few A. ..
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@ value communication
o label selections (for projection)
e conditionals

e trailing procedure calls (for recursion)
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our language

a minimal choreography language

@ value communication
o label selections (for projection)
e conditionals

e trailing procedure calls (for recursion)

agnostic language

@ parametric on expressions and values
@ only two labels
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choreographic language

@ syntax and semantics

@ progress and deadlock-freedom

@ properties of the semantics:
determinism, confluence

@ turing completeness from the
communication structure
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choreographies in coq

choreographic language

@ syntax and semantics

@ progress and deadlock-freedom

@ properties of the semantics:
determinism, confluence

@ turing completeness from the
communication structure

hard, but insightful

@ motivated changes in the presentation of the semantics

@ much “cleaner” and more elegant theory

o faster to formalise than to get the original article accepted. .. |
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projection

the epp theorem

o definition of a suitable process calculus

o formalisation of endpoint projection

o challenges: partial functions
(branching terms, merging, projection)

o different solutions (dedicated terms,
auxiliary types, indirect definitions)

(ictac'21

@ case explosion (partially) handled by
automation
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projection

the epp theorem

o definition of a suitable process calculus

o formalisation of endpoint projection

(]

challenges: partial functions
(branching terms, merging, projection)

different solutions (dedicated terms,
auxiliary types, indirect definitions)

(ictac'21)

(]

case explosion (partially) handled by
automation

several steps could be simplified; the current formalisation is
significantly shorter than the original one :-)
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@ build a compiler to a “real” programming language

o identify bottlenecks and extend the theory
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the next steps

make the framework usable in practice

@ build a compiler to a “real” programming language

o identify bottlenecks and extend the theory

natural candidates

o amendment procedure

@ elimination of label selections

@ possibility of livelocks (essential for services)
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@ coq's extraction yields a certified
implementation of epp

@ networks must be translated to a
programming language

@ structural mapping to jolie

@ new feature: annotations in (forte'23)
communications
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generating executable code

compilation to jolie

@ coq's extraction yields a certified
implementation of epp

@ networks must be translated to a
programming language

@ structural mapping to jolie

@ new feature: annotations in (forte'23)
communications

to certify or not to certify?

@ in principle this compilation could be formalised in coq

@ ...but the benefits of the extra work are less obvious
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choreography amendment

authentication choreography, revisited

c.credentials --> ip.x;

If ip.(check x)

Then ip -—> s[left]; ip —-> clleft];
s.token --> c.t

Else ip --> s[right]; ip --> clright]

@ selections can be inferred automatically

@ operational correspondence (multi-step,
up to permutation)
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choreography amendment

authentication choreography, revisited

c.credentials --> ip.x;

If ip.(check x)

Then ip -—> s[left]; ip —-> clleft];
s.token --> c.t

Else ip --> s[right]; ip --> clright]

@ selections can be inferred automatically

@ operational correspondence (multi-step,
up to permutation)

oh, the irony

@ the original theorem was wrong

@ coq led us to counter-examples and to the correct statement
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@ processes can be muted in recursive calls

(Ipar'23)

@ possibility for livelocks




new contributions
oooe

livelocks and services

authentication, now with retries

X = c.credentials --> ip.x;
If ip.(check x)
Then ip --> c[left]; s.token --> c.t
Else ip --> c[right]; X[s]
@ more permissive projection
s : cl!token

@ processes can be muted in recursive calls (Ipar'23)
@ possibility for livelocks

coq as a research tool

@ a lot of adaptation of old proofs (very doable)

@ many technical details that might have been overlooked
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conclusions

closing remarks

o a formalised framework for choreographic programming
@ compilation to jolie ~~ can be used to produce executable code

@ robust and modular theory ~~ can be used for research

.

@ proof automation
o formalisation of security protocols

@ more features: non-deterministic choice, process spawning

expected challenges
o full-fledged binders

@ sublanguages




thank you!
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