The ordinals in set theory and type theory are the same

Tom de Jong Nicolai Kraus Fredrik Nordvall Forsberg Chuangjie Xu

TYPES 2023 Valencia, Spain 12 June 2023

The usefulness of ordinals

- Give semantics to inductive data types. Construct initial algebras by transfinite iteration.
- Justify recursion and termination of programs. Construct a strictly decreasing measure.
- Determine the proof-theoretic strength of a formal system *T*.
 Find least ordinal α such that *T* cannot prove α well ordered.
- Interesting structure in their own right.
 For example with rich theory of arithmetic.

The usefulness of ordinals

- Give semantics to inductive data types. Construct initial algebras by transfinite iteration.
- Justify recursion and termination of programs. Construct a strictly decreasing measure.
- Determine the proof-theoretic strength of a formal system *T*.
 Find least ordinal α such that *T* cannot prove α well ordered.
- Interesting structure in their own right.
 For example with rich theory of arithmetic.

Want to do this internally to our type theory/topos/programming language \implies Want a constructive theory of ordinals.

There are many classically equivalent notions of ordinals in set theory. The following is constructively acceptable [Powell 1975, Aczel-Rathjen 2010].

Def. A set x is transitive if $z \in y$ and $y \in x$ implies $z \in x$.

Def. A set-theoretic ordinal is a transitive set whose elements are all transitive.

Examples $0 \coloneqq \emptyset$, $1 \coloneqq \{\emptyset\}$, $2 \coloneqq \{\emptyset, \{\emptyset\}\}$, ..., $\mathbb{N} \coloneqq \{0, 1, 2, ...\}$, ... are all set-theoretic ordinals.

Ordinals in homotopy type theory

In type theory, the statement "z : y and y : x implies z : x" makes no sense. The HoTT book [§ 10.3] instead defines ordinals as follows.

Def. A (type-theoretic) ordinal is a type X with a prop-valued binary relation < that is transitive, extensional and wellfounded.

Example $(\mathbb{N}, <)$ is a type-theoretic ordinal.

Ordinals in homotopy type theory

In type theory, the statement "z : y and y : x implies z : x" makes no sense. The HoTT book [§ 10.3] instead defines ordinals as follows.

Def. A (type-theoretic) ordinal is a type X with a prop-valued binary relation < that is transitive, extensional and wellfounded.

Example $(\mathbb{N}, <)$ is a type-theoretic ordinal.

Extensionality means that we have

$$x = y \iff \forall (u : X).(u < x \iff u < y)$$

It follows that X is an hset.

Ordinals in homotopy type theory

In type theory, the statement "z : y and y : x implies z : x" makes no sense. The HoTT book [§ 10.3] instead defines ordinals as follows.

Def. A (type-theoretic) ordinal is a type X with a prop-valued binary relation < that is transitive, extensional and wellfounded.

Example $(\mathbb{N}, <)$ is a type-theoretic ordinal.

Extensionality means that we have

$$x = y \iff \forall (u : X).(u < x \iff u < y)$$

It follows that X is an hset.

Wellfoundedness is defined in terms of accessibility, but is equivalent to transfinite induction: for every $P: X \to U$, we have $\Pi(x: X).P(x)$ as soon as $\Pi(x: X).(\Pi(y: X).(y < x \to P(y))) \to P(x).$

The ordinal of type-theoretic ordinals

We write Ord for the type of (small) type-theoretic ordinals.

The ordinal of type-theoretic ordinals

We write Ord for the type of (small) type-theoretic ordinals.

Thm. (HoTT Book 10.3.20) The type Ord is itself a (large) type-theoretic ordinal with relation \prec given by

 $\begin{array}{l} \alpha \prec \beta \Longleftrightarrow \ \alpha \text{ is an initial segment of } \beta \\ \iff \Sigma(y:\beta).(\alpha = \beta \downarrow y) \end{array}$

where we write $\beta \downarrow y$ for the (sub)ordinal $\Sigma(x : \beta).(x < y)$.

That is, \prec is prop-valued, transitive, extensional and wellfounded.

HoTT hosts a model (\mathbb{V}, \in) of a constructive set theory, known as the cumulative hierarchy [HoTT book §10.5].

HoTT hosts a model (\mathbb{V}, \in) of a constructive set theory, known as the cumulative hierarchy [HoTT book §10.5].

The type $\mathbb V$ is a higher inductive type with point constructor

 \mathbb{V} -set : $(\Sigma(A : \mathcal{U}).(A \to \mathbb{V})) \to \mathbb{V}$

quotiented by bisimilarity: \mathbb{V} -set(A, f) and \mathbb{V} -set(B, g) are identified exactly when f and g have the same image.

HoTT hosts a model (\mathbb{V}, \in) of a constructive set theory, known as the cumulative hierarchy [HoTT book §10.5].

The type $\mathbb V$ is a higher inductive type with point constructor

 \mathbb{V} -set : $(\Sigma(A : \mathcal{U}).(A \to \mathbb{V})) \to \mathbb{V}$

quotiented by bisimilarity: \mathbb{V} -set(A, f) and \mathbb{V} -set(B, g) are identified exactly when f and g have the same image.

For example, the empty set is represented by \mathbb{V} -set(0,0-rec), and if $x : \mathbb{V}$, then the singleton $\{x\}$ is represented by \mathbb{V} -set(1, $\lambda(u : 1).x$).

HoTT hosts a model (\mathbb{V}, \in) of a constructive set theory, known as the cumulative hierarchy [HoTT book §10.5].

The type $\mathbb V$ is a higher inductive type with point constructor

 $\mathbb{V}\text{-set}: (\Sigma(A:\mathcal{U}).(A \to \mathbb{V})) \to \mathbb{V}$

quotiented by bisimilarity: \mathbb{V} -set(A, f) and \mathbb{V} -set(B, g) are identified exactly when f and g have the same image.

For example, the empty set is represented by \mathbb{V} -set(0, 0-rec), and if $x : \mathbb{V}$, then the singleton $\{x\}$ is represented by \mathbb{V} -set(1, $\lambda(u : 1).x$).

This is a refinement of Aczel's 1978 model of CZF in type theory (see also Gylterud [2018]).

The ordinal of set-theoretic ordinals

Def. We define set-membership $\in : \mathbb{V} \to \mathbb{V} \to \mathsf{Prop}$ by

$$x \in \mathbb{V}$$
-set $(A, f) :\equiv \exists (a : A).f(a) = x$

The ordinal of set-theoretic ordinals

Def. We define set-membership $\in : \mathbb{V} \to \mathbb{V} \to \mathsf{Prop}$ by

$$x \in \mathbb{V}$$
-set $(A, f) :\equiv \exists (a : A).f(a) = x$

Using \in , we define the subtype \mathbb{V}_{ord} of \mathbb{V} of set-theoretic ordinals in HoTT:

 $\mathbb{V}_{ord} :\equiv \Sigma(x : \mathbb{V})$.is-set-theoretic-ordinal(x)

The ordinal of set-theoretic ordinals

Def. We define set-membership $\in : \mathbb{V} \to \mathbb{V} \to \mathsf{Prop}$ by

$$x \in \mathbb{V}$$
-set $(A, f) :\equiv \exists (a : A).f(a) = x$

Using \in , we define the subtype \mathbb{V}_{ord} of \mathbb{V} of set-theoretic ordinals in HoTT:

 $\mathbb{V}_{ord} :\equiv \Sigma(x : \mathbb{V})$.is-set-theoretic-ordinal(x)

The cumulative hierarchy \mathbb{V} validates the axioms of \in -extensionality and \in -induction. Since \mathbb{V}_{ord} is restricted to hereditarily transitive sets, we get:

Thm. (\mathbb{V}_{ord}, \in) is a type-theoretic ordinal.

Set-theoretic and type-theoretic ordinals coincide

Thm. (\mathbb{V}_{ord}, \in) and (Ord, \prec) are equivalent as ordinals. Hence, by univalence, they are equal.

Thus, in HoTT,

set-theoretic and type-theoretic ordinals coincide.

From type-theoretic ordinals to set-theoretic ordinals

Define $\Phi:\mathsf{Ord}\to\mathbb{V}_{\mathsf{ord}}$ by transfinite recursion:

 $\Phi(\alpha) \coloneqq \mathbb{V}\operatorname{-set}(\alpha, \lambda(\mathbf{a} : \alpha) \cdot \Phi(\alpha \downarrow \mathbf{a})).$

From type-theoretic ordinals to set-theoretic ordinals

Define $\Phi:\mathsf{Ord}\to\mathbb{V}_{\mathsf{ord}}$ by transfinite recursion:

$$\Phi(lpha)\coloneqq \mathbb{V} ext{-set}(lpha,\lambda(a:lpha).\Phi(lpha\downarrow a)).$$

This is well-defined, because $(\alpha \downarrow a) \prec \alpha$, and the fact that \prec on Ord is wellfounded.

From set-theoretic ordinals to type-theoretic ordinals

The map $\Psi:\mathbb{V}_{\mathsf{ord}}\to\mathsf{Ord}$ is the rank function:

$$\Psi(\mathbb{V}\operatorname{-set}(A,f)) \coloneqq \bigvee_{a:A} (\Psi(f(a)) + 1),$$

where \lor denotes the supremum of ordinals, which exists for any small family of ordinals [de Jong–Escardó 2023].

From set-theoretic ordinals to type-theoretic ordinals

The map $\Psi:\mathbb{V}_{\text{ord}}\rightarrow \text{Ord}$ is the rank function:

$$\Psi(\mathbb{V}\operatorname{-set}(A, f)) \coloneqq \bigvee_{a:A} (\Psi(f(a)) + 1),$$

where \lor denotes the supremum of ordinals, which exists for any small family of ordinals [de Jong–Escardó 2023].

It is possible to give nonrecursive descriptions of the rank:

 $\Psi(x)\simeq \Sigma(y:\mathbb{V}).y\in x \quad \text{and} \quad \Psi(\mathbb{V} ext{-set}(A,f))=A/{\sim},$

where $a \sim b \iff f(a) = f(b)$. (But be careful about size.)

Set-theoretic and type-theoretic ordinals coincide

Thm. The type-theoretic ordinals (\mathbb{V}_{ord}, \in) and (Ord, \prec) are equivalent.

Proof sketch The maps Φ : Ord $\rightarrow \mathbb{V}_{ord}$ and $\Psi : \mathbb{V}_{ord} \rightarrow Ord$ give an isomorphism of ordinals. In particular,

 $\alpha \prec \beta \iff \Phi(\alpha) \in \Phi(\beta)$ and $x \in y \iff \Psi(x) \prec \Psi(y)$. \Box

Capturing all of the cumulative hierarchy

Can we realize *all* of \mathbb{V} as a type of ordered structures?

That is, can we find a type making the square

commute?

Capturing all of the cumulative hierarchy

Can we realize *all* of \mathbb{V} as a type of ordered structures?

That is, can we find a type making the square

commute?

An initial first attempt may be to simply drop transitivity, i.e., to take

? = type of extensional wellfounded relations.

Capturing all of the cumulative hierarchy

Can we realize *all* of \mathbb{V} as a type of ordered structures?

That is, can we find a type making the square

commute?

An initial first attempt may be to simply drop transitivity, i.e., to take

? = type of extensional wellfounded relations.

This does not work for cardinality reasons: there are more subsets of $\{\emptyset, \{\emptyset\}\}$ than extensional wellfounded relations embedding into 0 < 1.

Instead, we consider extensional wellfounded relations (A, <) with a marking: a predicate on A that picks out the top-level elements of a set.

Instead, we consider extensional wellfounded relations (A, <) with a marking: a predicate on A that picks out the top-level elements of a set.

A marking is covering if any element can be reached from a marked element, i.e., if the relation contains no "junk".

Instead, we consider extensional wellfounded relations (A, <) with a marking: a predicate on A that picks out the top-level elements of a set.

A marking is covering if any element can be reached from a marked element, i.e., if the relation contains no "junk".

Similar ideas of encoding sets as wellfounded structures can be found in Osius [1974], Aczel [1977, 1988], Taylor [1996], and Adamek et al. [2013].

Def. We write MEWO_{cov} for the type of covered marked extensional wellfounded order relations.

Instead, we consider extensional wellfounded relations (A, <) with a marking: a predicate on A that picks out the top-level elements of a set.

A marking is covering if any element can be reached from a marked element, i.e., if the relation contains no "junk".

Similar ideas of encoding sets as wellfounded structures can be found in Osius [1974], Aczel [1977, 1988], Taylor [1996], and Adamek et al. [2013].

Def. We write MEWO_{cov} for the type of covered marked extensional wellfounded order relations.

Every ordinal can be equipped with the trivial covering by marking everything (and forgetting transitivity). Hence Ord embeds into $\ensuremath{\mathsf{MEWO}_{\mathsf{cov}}}.$

To show $\mathbb{V} = MEWO_{cov}$, we construct a mewo of mewos, and show that \mathbb{V} and $MEWO_{cov}$ are equivalent as mewos, by generalising the constructions for \mathbb{V}_{ord} and Ord. (Coveredness crucial for well-definedness of mewo version of " + 1".)

To show $\mathbb{V} = MEWO_{cov}$, we construct a mewo of mewos, and show that \mathbb{V} and $MEWO_{cov}$ are equivalent as mewos, by generalising the constructions for \mathbb{V}_{ord} and Ord. (Coveredness crucial for well-definedness of mewo version of " + 1".)

In particular, this gives a "non-inductive" presentation of the cumulative hierarchy $\mathbb V.$

Summary

In HoTT, the set-theoretic ordinals in $\ensuremath{\mathbb{V}}$ coincide with the type-theoretic ordinals.

By generalising from type-theoretic ordinals to covered mewos, we capture all sets in $\mathbb V.$

Question: Can we similarly capture non-wellfounded sets as certain graphs in HoTT?

Set-Theoretic and Type-Theoretic Ordinals Coincide. Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg and Chuangjie Xu. arXiv:2301.10696. To appear at LICS'23.

Full Agda formalisation. Building on Escardó's TypeTopology, and the agda/cubical library. https://tdejong.com/agda-html/st-tt-ordinals/

References

Peter Aczel. 'An introduction to inductive definitions'. In: *Handbook of Mathematical Logic*. Ed. by Jon Barwise. Vol. 90. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, 1977, pp. 739–782. DOI: 10.1016/S0049-237X(08)71120-0.

Peter Aczel. Non-well-founded sets. CSLI lecture notes 14. Center for the Study of Language and Information, 1988.

Peter Aczel. 'The type theoretic interpretation of constructive set theory'. In: Logic Colloquium '77. Ed. by A. MacIntyre, L. Pacholski and J. Paris. Vol. 96. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, 1978, pp. 55–66. DOI: 10.1016/S0049-237X(08)71989-X.

Peter Aczel and Michael Rathjen. 'Notes on Constructive Set Theory'. Book draft, available at: https://www1.maths.leeds.ac.uk/~rathjen/book.pdf. 2010.

Jiří Adámek et al. 'Well-Pointed Coalgebras'. In: Logical Methods in Computer Science 9.3 (2013). DOI: 10.2168/LMCS-9(3:2)2013.

Martín Hötzel Escardó et al. 'Ordinals in univalent type theory in Agda notation'. Agda development, HTML rendering available at: https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.index.html. 2018.

Håkon Robbestad Gylterud. 'From Multisets to Sets in Homotopy Type Theory'. In: *The Journal of Symbolic Logic* 83.3 (2018), pp. 1132–1146. DOI: 10.1017/jsl.2017.84.

Tom de Jong and Martín Hötzel Escardó. 'On Small Types in Univalent Foundations'. In: Logical Methods in Computer Science 12.2 (2023), 8:1–8:33.

Gerhard Osius. 'Categorical set theory: A characterization of the category of sets'. In: Journal of Pure and Applied Algebra 4.1 (1974), pp. 79–119. DOI: 10.1016/0022-4049(74)90032-2.

William C. Powell. 'Extending Gödel's negative interpretation to ZF'. In: The Journal of Symbolic Logic 40.2 (1975), pp. 221–229. DOI: 10.1017/jsl.2017.84.

Paul Taylor. 'Intuitionistic Sets and Ordinals'. In: The Journal of Symbolic Logic 61.3 (1996), pp. 705-744.

The agda/cubical development team. The agda/cubical library. Available at: https://github.com/agda/cubical/. 2018-.

Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study: https://homotopytypetheory.org/book, 2013.