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The goal of this talk

CompLF Logical framework for defining dependent type theories

Capture their usual presentation, in particular non-annotated syntaxes

Generic bidirectional algorithm can be instantiated with various theories
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Logical frameworks Unified formalisms for defining type theories

Theoretical interest
= One unified notion of theory, of model, etc
» Theorems proven once and for all
Practical interest

= One unified implementation
= Prototyping new systems (like with rewrite rules in Agda)

= Independent typecheckers for proof assistants (as in Dedukti)
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LFs can be classified in two groups

Pure LFs

» Fixed definitional equality, terms derivations encoded as terms
v Good for formalizing metatheory (Twelf, Beluga)
X Typechecker for the-theery its judgment derivations

Equational LFs

v/ Customizable definitional equality, allows defining type theories directly

X Customizable definitional equality, how to implement?
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Dedukti

= |dea: restrict supported equalities, making implementation tractable
Only computational theories, that is, equality generated only by rewriting
v Rewriting allows (fast!) theory-agnostic equality checking
(experience rechecking big proof libraries confirms this)

However, mismatch between syntax of your type theory vs syntax of it in Dedukti

X “Bureaucratic” meaningless terms, not in the image of translation function
v Ax.0(t,x)) X A0(t)) X M(z.2)(@,1))
X Only supports fully annotated syntax: (t,u) = (t,u)axs
= Impacts performance and user experience
= Makes difficult to relate to standard non-annotated presentation
= Excess of annotations interacts badly with rewriting, adds non-linearity
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1st Contribution | propose CompLF

= A logical framework for computational type theories

Like in Dedukti, easy theory-agnostic equality checking with rewriting

But, faithful representation of syntax

v" No bureaucratic terms, only meaningful ones
AMz2HG4) MO A(x.0(t, x))

v/ Supports theories with non-annotated syntaxes



Example Minimalistic MLTT defined by Txn := (Xxn, Ran)
Ran = OA(x-t(x), 1)) —> t(u)
Tan =
Ty: O
Tm: (A:Ty) = O
M: (A:Ty)(B: (x: Tm(a)) = Ty) = Ty
A {A:TyHB: (x: Tm(a)) — Ty}
(t:(x:Tm(a)) = Tm(B(x))) — Tm(M(A, x.B(x)))
Q: {A:Ty}{B: (x:Tm(a)) — Ty}
(t : Tm(MN(4, x.B(x))))(u : Tm(A)) — Tm(B(u))
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Ran = Q(A(x.t(x),u)) — t(u)

Z)\n =

Ty: O

Tm: (A:
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(t:
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> \n describes typing rules, ¢ n describes syntax
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Example Minimalistic MLTT defined by Txn := (Xxn, Ran)

Ran = O(A(x.t(x), 1)) —> t(u)
Yan = = gn=
Ty O Ul e
Tm: (A:Ty) = O S Tmr (anty) O
M: (A:Ty)B: (x: Tm(a)) = Ty) = Ty LN aay)Es(xstm) o ty) by
A {A:TyHB: (x: Tm(a)) — Ty} Tl s (8 (x s tm) = tm) = tm
(t: (x: Tm(a)) = Tm(B(x))) — Tm(MN(4, x.B(x)))
@: {A: Ty}B: (x: Tm(A)) — Ty} L@ (6 tm)(u s tm) = tm
(t : Tm(N(4, x.B(x))))(u : Tm(A)) — Tm(B(u))
> \n describes typing rules, ¢ n describes syntax
Dependency Erasure | — | links specification of typing and syntax



Erased arguments marked with {—}, erased from the syntax but present in typing
A {A:TyHB: (x: Tm(a)) — Ty} — A (o (xtm) = tm) — tm

(t:(x:Tm(a)) = Tm(B(x))) — Tm(M(A, x.B(x)))
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Erased arguments marked with {—}, erased from the syntax but present in typing
A {A:TyHB: (x: Tm(a)) — Ty} — A (o (xtm) = tm) — tm

(t:(x:Tm(a)) = Tm(B(x))) — Tm(M(A, x.B(x)))

NrEA:Ty Mx:Tm(AFB: Ty Mx:Tm(A)Ft:Tm(B)
I A(x.t) : Tm(MN(A, x.B))

Problem They jeopardize decidability of typing. Guess arguments?
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Bidirectional typing algorithms Alternate between two modes

Check (input: T, ¢, T)
Infer (input: I, t) (output: T)
Allow specify flow of type information in typing rules
C —"MN(A,x.B) Mx:Tm(A)Ft < Tm(B)
[ A(x.t) < Tm(C)

Complement erased arguments very well, explains why they are redundant

Previous work Principles of (dependent) bidirectional typing well-known
However, no generic framework (as far as | know)

LFs can be used for this!



2nd Contribution Theory-agnostic bidirectional typing algorithm

10



2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by turning theory into a moded theory
Each erased argument needs to appear in a rigid pattern

10



2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by turning theory into a moded theory
Each erased argument needs to appear in a rigid pattern

v Sound (assuming confluence, subject reduction and theory is well typed)

10



2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by turning theory into a moded theory
Each erased argument needs to appear in a rigid pattern

v Sound (assuming confluence, subject reduction and theory is well typed)
v Complete for well-moded terms (assuming also strong normalisation)

10



2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by turning theory into a moded theory
Each erased argument needs to appear in a rigid pattern

v Sound (assuming confluence, subject reduction and theory is well typed)
v Complete for well-moded terms (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

10



2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by turning theory into a moded theory
Each erased argument needs to appear in a rigid pattern

v Sound (assuming confluence, subject reduction and theory is well typed)

v Complete for well-moded terms (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness
AT {A:Ty}H{B: (x: Tm(8)) — Ty}
(t:(x:Tm(a)) = Tm(B(x)))~ — Tm(MN(4, x.B(x)))
C —* N(A, x.B)
Mx:Tm(A)Ft < Tm(B)
[ A(x.t) < Tm(C)

Well-moded = [-normal forms 10



2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by turning theory into a moded theory
Each erased argument needs to appear in a rigid pattern

v Sound (assuming confluence, subject reduction and theory is well typed)
v Complete for well-moded terms (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

AT {A:TyHB: (x: Tm(4)) — Ty} AT (A Ty) " {B: (x: Tm(a)) — Ty}
(t:(x:Tm(a)) = Tm(B(x)))~ — Tm(MN(4, x.B(x))) (t: (x : Tm(a)) = Tm(B(x)))" — Tm(MN(4, x.B(x)))

C —"MN(A x.B) rFA<=Ty
Mx:Tm(A)Ft < Tm(B) x:Tm(A)F t = Tm(B)
[ A(x.t) < Tm(C) [ A(A x.t) = Tm(M(A, x.B))

Well-moded = [-normal forms Well-moded = all terms 10



(* Judgment forms *)
symbol Ty : *

symbol Tm (A : Ty)- : *

(* Dependent products (lambda not annotated) *)
symbol+ M (A : Ty)- (B : (x : Tm A) Ty)- : Ty

symbol- A {A : Ty} {B : (_ : Tm A) Ty} (t : (x : Tm A) Tm B(x))- : Tm M(A, x. B(x))
symbol+ @ {A : Ty} {B : (_ : Tm A) Ty} (t : Tm M(A, x. B(x)))+ (u : Tm A)- : Tm B(u)
rew @(A(x. $t(x)), $u) --> $t(su)

symbol+ T : Ty (* Auxiliary base type *)

(* Example *)
let churchl : Tm N(A(T, _. T), _. M(T, _. T)) := A(F. A(x. @(f, x)))
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(* Glves error *)

(* let redex : Tm M(T, _. T) := A(x. @(A(y.y), X)) *)

(* Dependent products (lambda annotated) *)
symbol+ M' (A : Ty)- (B : (x : Tm A) Ty)- :

symbol+ @' {A : Ty} {B : (_ : Tm A) Ty} (t :

symbol+ A' (A : Ty)- {B : (_ : Tm A) Ty} (t :

rew @'(A'(ST, x. $t(x)), $u) --> $t(Su)

(* Now it works! *)
type A'(T, x. @"(A'(T, y.y), X))
| 1.7k complf/test/ugs.complf 15:0 21%

[type] A'(T, x0. @'(A'(T, x1. x1), x0))
thiago@thiago-work:~/git/complf$

Ty
Tm M'(A, x. B(x)))+ (u

(x : Tm A) Tm B(X))+ :

: ITm(M'(T, x0. T))

: Tm A)- : Tm B(u)

Tm M'(A, x. B(x))

Fundanental (+4)
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Beyond dependent products
(* Universe *)

symbol+ U : Ty

symbol+ EL (A : Tm U)- : Ty

(* Equality type *)
symbol+ Eq (A : Ty)- (t : Tm A)- (u : Tm A)- : Ty

symbol- refl {A : Ty} {t : Tm A} : Tm Eq(A, t, t)

symbol+ J {A : Ty} {a : Tm A} {b : Tm A} (t : Tm Eq(A, a, b))+
(P:(x:TmA,y: Tm Eq(A, a, X)) Ty)- (prefl : Tm P(a, refl))- : Tm P(b, t)

rew J(refl, x y. $P(x, y), $prefl) --> $prefl

(* Code in U for Eq *)
symbol+ eq (a : Tm U)- (x : Tm EL(a))- (y : Tm EL(a))- : Tm U

rew El(eq($a, $x, $y)) --> Eq(EL($a), $x, $y)

(* Properties of equality *)

let sym : Tm (U, a. N(EL(a), x. M(EL(a), y. M(Eq(EL(a), X, y), _. EQ(EL(a), y, X)))))
= A(a. A(x. A(y. A(p. I(p, z q. Eq(EL(a), z, x), refl)))))

let transp : Tm MU, a. M(U, b. NM(Eq(U, a, b), _. M(EL(a), _. EL(b)))))
:= A(a. A(b. A(p. A(x. I(p, z q. EL(Z), x)))))
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Beyond dependent products
(* Universe *)

symbol+ U : Ty

symbol+ EL (A : Tm U)- : Ty

(* Equality type *)
symbol+ Eq (A : Ty)- (t : Tm A)- (u : Tm A)- : Ty

symbol- refl {A : Ty} {t : Tm A} : Tm Eq(A, t, t)

symbol+ J {A : Ty} {a : Tm A} {b : Tm A} (t : Tm Eq(A, a, b))+
(P:(x:TmA,y: Tm Eq(A, a, X)) Ty)- (prefl : Tm P(a, refl))- : Tm P(b, t)

rew J(refl, x y. $P(x, y), $prefl) --> $prefl

(* Code in U for Eq *)
symbol+ eq (a : Tm U)- (x : Tm EL(a))- (y : Tm EL(a))- : Tm U

rew El(eq($a, $x, $y)) --> Eq(EL(%$a), $x, $y)

(* Properties of equality *)
let sym : Tm (U, a. N(EL(a), x. M(EL(a), y. M(Eq(EL(a), X, y), _. EQ(EL(a), y, X)))))
:= A(a. A(x. A(y. A(p. I(p, z q. Eq(EL(a), z, x), refl)))))

let transp : Tm MU, a. M(U, b. NM(Eq(U, a, b), _. M(EL(a), _. EL(b)))))
:= A(a. A(b. A(p. A(x. I(p, z q. EL(Z), x)))))

But also other types (X, List, Nat,...), cumulative universes, universe polymor-

phism, higher-order logic, etc
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Conclusion

ComplLF Logical framework for computational type theories

Support for non-annotated theories, faithful presentation of syntax

Customisable bidirectional typing algorithm

Prototype implementation at https://github.com/thiagofelicissimo/complf

Thank you for your attention!

14


https://github.com/thiagofelicissimo/complf

