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The goal of this talk

CompLF Logical framework for defining dependent type theories

Capture their usual presentation, in particular non-annotated syntaxes

Generic bidirectional algorithm can be instantiated with various theories
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Logical frameworks Unified formalisms for defining type theories

Theoretical interest

• One unified notion of theory, of model, etc
• Theorems proven once and for all

Practical interest

• One unified implementation
• Prototyping new systems (like with rewrite rules in Agda)
• Independent typecheckers for proof assistants (as in Dedukti)
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LFs can be classified in two groups

Pure LFs

• Fixed definitional equality, terms derivations encoded as terms
✓ Good for formalizing metatheory (Twelf, Beluga)
✗ Typechecker for the theory its judgment derivations

Equational LFs

✓ Customizable definitional equality, allows defining type theories directly
✗ Customizable definitional equality, how to implement?
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Dedukti

• Idea: restrict supported equalities, making implementation tractable
Only computational theories, that is, equality generated only by rewriting

✓ Rewriting allows (fast!) theory-agnostic equality checking
(experience rechecking big proof libraries confirms this)

However, mismatch between syntax of your type theory vs syntax of it in Dedukti

✗ “Bureaucratic” meaningless terms, not in the image of translation function
✓ λ(x .@(t, x)) ✗ λ(@(t)) ✗ λ((z .z)(@, t))

✗ Only supports fully annotated syntax: ⟨t, u⟩ =⇒ ⟨t, u⟩A,x .B
• Impacts performance and user experience
• Makes difficult to relate to standard non-annotated presentation
• Excess of annotations interacts badly with rewriting, adds non-linearity
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1st Contribution I propose CompLF

• A logical framework for computational type theories
Like in Dedukti, easy theory-agnostic equality checking with rewriting

But, faithful representation of syntax

✓ No bureaucratic terms, only meaningful ones
λ((z .z)(@, t)) λ(@(t)) λ(x .@(t, x))

✓ Supports theories with non-annotated syntaxes
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Example Minimalistic MLTT defined by TλΠ := (ΣλΠ, RλΠ)

RλΠ := @(λ(x .t(x), u)) 7−→ t(u)

ΣλΠ :=

|−|7−−→ ςλΠ :=

Ty : □

|−|7−−→ Ty :: □

Tm : (A : Ty) → □

|−|7−−→ Tm :: (A :: ty) → □

Π : (A : Ty)(B : (x : Tm(A)) → Ty) → Ty

|−|7−−→ Π :: (A :: ty)(B :: (x :: tm) → ty) → ty

λ : {A : Ty}{B : (x : Tm(A)) → Ty}

|−|7−−→ λ :: (t :: (x :: tm) → tm) → tm

(t : (x : Tm(A)) → Tm(B(x))) → Tm(Π(A, x .B(x)))

@ : {A : Ty}{B : (x : Tm(A)) → Ty}

|−|7−−→ @ :: (t :: tm)(u :: tm) → tm

(t : Tm(Π(A, x .B(x))))(u : Tm(A)) → Tm(B(u))

ΣλΠ describes typing rules, ςλΠ describes syntax

Dependency Erasure | − | links specification of typing and syntax
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Erased arguments marked with {−}, erased from the syntax but present in typing

λ : {A : Ty}{B : (x : Tm(A)) → Ty} |−|7−−→ λ :: (t :: (x :: tm) → tm) → tm
(t : (x : Tm(A)) → Tm(B(x))) → Tm(Π(A, x .B(x)))

Γ ⊢ A : Ty Γ, x : Tm(A) ⊢ B : Ty Γ, x : Tm(A) ⊢ t : Tm(B)
Γ ⊢ λ(x .t) : Tm(Π(A, x .B))

Problem They jeopardize decidability of typing. Guess arguments?
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Bidirectional typing algorithms Alternate between two modes

Γ ⊢ t ⇐ T Check (input: Γ, t, T )

Γ ⊢ t ⇒ T Infer (input: Γ, t) (output: T )

Allow specify flow of type information in typing rules

C −→∗ Π(A, x .B) Γ, x : Tm(A) ⊢ t ⇐ Tm(B)
Γ ⊢ λ(x .t) ⇐ Tm(C)

Complement erased arguments very well, explains why they are redundant

Previous work Principles of (dependent) bidirectional typing well-known

However, no generic framework (as far as I know)

LFs can be used for this!
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2nd Contribution Theory-agnostic bidirectional typing algorithm

Can be instantiated by turning theory into a moded theory
Each erased argument needs to appear in a rigid pattern

✓ Sound (assuming confluence, subject reduction and theory is well typed)
✓ Complete for well-moded terms (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

λ− : {A : Ty}{B : (x : Tm(A)) → Ty}

(t : (x : Tm(A)) → Tm(B(x)))− → Tm(Π(A, x .B(x)))

C −→∗ Π(A, x .B)
Γ, x : Tm(A) ⊢ t ⇐ Tm(B)

Γ ⊢ λ(x .t) ⇐ Tm(C)

Well-moded = β-normal forms

λ+ : (A : Ty)−{B : (x : Tm(A)) → Ty}

(t : (x : Tm(A)) → Tm(B(x)))+ → Tm(Π(A, x .B(x)))

Γ ⊢ A ⇐ Ty
Γ, x : Tm(A) ⊢ t ⇒ Tm(B)

Γ ⊢ λ(A, x .t) ⇒ Tm(Π(A, x .B))

Well-moded = all terms
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Beyond dependent products

But also other types (Σ, List, Nat,...), cumulative universes, universe polymor-
phism, higher-order logic, etc
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Conclusion

CompLF Logical framework for computational type theories

Support for non-annotated theories, faithful presentation of syntax

Customisable bidirectional typing algorithm

Prototype implementation at https://github.com/thiagofelicissimo/complf

Thank you for your attention!
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