A Framework for Computational Type Theories with Erased Syntax and Bidirectional Typing

Thiago Felicissimo

29th International Conference on Types for Proofs and Programs June 12, 2023

CompLF Logical framework for defining dependent type theories Capture their usual presentation, in particular <u>non-annotated</u> syntaxes

Generic bidirectional algorithm can be instantiated with various theories

Logical frameworks Unified formalisms for defining type theories

Logical frameworks Unified formalisms for defining type theories

Theoretical interest

- One unified notion of theory, of model, etc
- Theorems proven once and for all

Practical interest

- One unified implementation
- Prototyping new systems (like with rewrite rules in Agda)
- Independent typecheckers for proof assistants (as in Dedukti)

Pure LFs

Pure LFs

Fixed definitional equality, terms derivations encoded as terms

Pure LFs

- Fixed definitional equality, terms derivations encoded as terms
- \checkmark Good for formalizing metatheory (Twelf, Beluga)

Pure LFs

- Fixed definitional equality, terms derivations encoded as terms
- ✓ Good for formalizing metatheory (Twelf, Beluga)
- \boldsymbol{X} Typechecker for the theory its judgment derivations

Pure LFs

- Fixed definitional equality, terms derivations encoded as terms
- ✓ Good for formalizing metatheory (Twelf, Beluga)
- X Typechecker for the theory its judgment derivations

Equational LFs

 \checkmark Customizable definitional equality, allows defining type theories directly

Pure LFs

- Fixed definitional equality, terms derivations encoded as terms
- ✓ Good for formalizing metatheory (Twelf, Beluga)
- X Typechecker for the theory its judgment derivations

- \checkmark Customizable definitional equality, allows defining type theories directly
- X Customizable definitional equality, how to implement?

Idea: restrict supported equalities, making implementation tractable
 Only *computational* theories, that is, equality generated only by rewriting

- Idea: restrict supported equalities, making implementation tractable
 Only *computational* theories, that is, equality generated only by rewriting
- ✓ Rewriting allows (fast!) theory-agnostic equality checking (experience rechecking big proof libraries confirms this)

- Idea: restrict supported equalities, making implementation tractable
 Only *computational* theories, that is, equality generated only by rewriting
- ✓ Rewriting allows (fast!) theory-agnostic equality checking (experience rechecking big proof libraries confirms this)

However, mismatch between syntax of your type theory vs syntax of it in Dedukti

- Idea: restrict supported equalities, making implementation tractable
 Only *computational* theories, that is, equality generated only by rewriting
- ✓ Rewriting allows (fast!) theory-agnostic equality checking (experience rechecking big proof libraries confirms this)

However, mismatch between syntax of your type theory vs syntax of it in Dedukti

X "Bureaucratic" meaningless terms, not in the image of translation function $\checkmark \lambda(x.\mathbb{Q}(t,x))$ **X** $\lambda(\mathbb{Q}(t))$ **X** $\lambda((z.z)(\mathbb{Q},t))$

- Idea: restrict supported equalities, making implementation tractable
 Only *computational* theories, that is, equality generated only by rewriting
- ✓ Rewriting allows (fast!) theory-agnostic equality checking (experience rechecking big proof libraries confirms this)

However, mismatch between syntax of your type theory vs syntax of it in Dedukti

- \pmb{X} "Bureaucratic" meaningless terms, not in the image of translation function
 - $\checkmark \quad \lambda(x.@(t,x)) \qquad \checkmark \quad \lambda(@(t)) \qquad \checkmark \quad \lambda((z.z)(@,t))$
- $\pmb{\varkappa}$ Only supports fully annotated syntax: $\langle t,u\rangle\implies\langle t,u\rangle_{A,\times .B}$
 - Impacts performance and user experience
 - Makes difficult to relate to standard non-annotated presentation
 - Excess of annotations interacts badly with rewriting, adds non-linearity

A logical framework for computational type theories
 Like in Dedukti, easy theory-agnostic equality checking with rewriting

A logical framework for computational type theories
 Like in Dedukti, easy theory-agnostic equality checking with rewriting

But, faithful representation of syntax

A logical framework for computational type theories
 Like in Dedukti, easy theory-agnostic equality checking with rewriting

But, faithful representation of syntax

✓ No bureaucratic terms, only meaningful ones $\frac{\lambda((z,z)(@,t))}{\lambda(@(t))} = \lambda(x.@(t,x))$

A logical framework for computational type theories
 Like in Dedukti, easy theory-agnostic equality checking with rewriting

But, faithful representation of syntax

- ✓ No bureaucratic terms, only meaningful ones $\frac{\lambda((z,z)(@,t))}{\lambda(@(t))} = \lambda(x.@(t,x))$
- \checkmark Supports theories with non-annotated syntaxes

Example Minimalistic MLTT defined by $\mathbb{T}_{\lambda\Pi} := (\Sigma_{\lambda\Pi}, \mathcal{R}_{\lambda\Pi})$

$$\mathcal{R}_{\lambda\Pi}:= \ \ oldsymbol{\mathbb{Q}}(\lambda(x. t t(x), t u))\longmapsto t t(t u)$$

 $\Sigma_{\lambda\Pi}:=$

Ту : 🗆

- $\mathsf{Tm}:\ (\mathtt{A}:\mathsf{Ty})\to \Box$
 - $\Pi:\ (\texttt{A}:\mathsf{Ty})(\texttt{B}:(x:\mathsf{Tm}(\texttt{A}))\to\mathsf{Ty})\to\mathsf{Ty}$
 - $$\begin{split} \lambda : & \{\mathtt{A} : \mathtt{Ty}\}\{\mathtt{B} : (x : \mathtt{Tm}(\mathtt{A})) \to \mathtt{Ty}\} \\ & (\mathtt{t} : (x : \mathtt{Tm}(\mathtt{A})) \to \mathtt{Tm}(\mathtt{B}(x))) \to \mathtt{Tm}(\Pi(\mathtt{A}, x.\mathtt{B}(x))) \end{split}$$
 - $$\begin{split} & @: \ \{ \texttt{A} : \mathsf{Ty} \} \{ \texttt{B} : (x : \mathsf{Tm}(\texttt{A})) \to \mathsf{Ty} \} \\ & (\texttt{t} : \mathsf{Tm}(\Pi(\texttt{A}, x.\texttt{B}(x))))(\texttt{u} : \mathsf{Tm}(\texttt{A})) \to \mathsf{Tm}(\texttt{B}(\texttt{u})) \end{split}$$

Example Minimalistic MLTT defined by $\mathbb{T}_{\lambda\Pi} := (\Sigma_{\lambda\Pi}, \mathcal{R}_{\lambda\Pi})$

$$\begin{split} \mathcal{R}_{\lambda\Pi} &:= & \mathbb{Q}(\lambda(x,t(x),u)) \longmapsto t(u) \\ \Sigma_{\lambda\Pi} &:= & & \varsigma_{\lambda\Pi} &:= \\ & \mathsf{T}y: \ \Box & & \mathsf{T}y: \ (A::ty) \to \Box & & \mathsf{T}y: \ (A::ty) \to \Box & & \mathsf{T}y: \ \Box & & \mathsf{T}y: \ (A::ty) \to \Box & & \mathsf{T}y: \ (A::ty) \to \forall y \to \mathsf{t}y & & \mathsf{T}y: \ (A::ty)(\mathsf{B}::(x::tm) \to \mathsf{t}y) \to \mathsf{t}y & & \mathsf{L}: \ (t::(x::tm) \to \mathsf{t}y) \to \mathsf{t}y & & \mathsf{L}: \ (t::(x::tm) \to \mathsf{t}m) \to \mathsf{t}m & & \mathsf{L}: \ (t::(x::tm) \to \mathsf{t}m) \to \mathsf{t}m & & \mathsf{L}: \ (t::tm)(u::tm) \to \mathsf{L}: \ (t::tm)(u::tm)(u::tm) \to \mathsf{L}: \ (t::tm)(u::tm)(u::tm) \to \mathsf{L}: \ (t::tm)(u::tm)(u::tm) \to \mathsf{L}: \ (t::tm)(u::tm)(u::tm) \to \mathsf{L}: \ (t::tm)(u::tm)(u::tm)(u::tm) \to \mathsf{L}:$$

 $\Sigma_{\lambda\Pi}$ describes typing rules, $\varsigma_{\lambda\Pi}$ describes syntax

Example Minimalistic MLTT defined by $\mathbb{T}_{\lambda\Pi} := (\Sigma_{\lambda\Pi}, \mathcal{R}_{\lambda\Pi})$

 $\Sigma_{\lambda\Pi}$ describes typing rules, $\varsigma_{\lambda\Pi}$ describes syntax

Dependency Erasure |-| links specification of typing and syntax

 \rightarrow tv

Erased arguments marked with $\{-\}$, erased from the syntax but present in typing

 $\begin{array}{ll} \lambda: \{A:\mathsf{Ty}\}\{B:(x:\mathsf{Tm}(A))\to\mathsf{Ty}\} & \stackrel{|-|}{\longmapsto} & \lambda:: \ (\mathtt{t}::(x::\mathsf{tm})\to\mathsf{tm})\to\mathsf{tm}\\ (\mathtt{t}:(x:\mathsf{Tm}(A))\to\mathsf{Tm}(B(x)))\to\mathsf{Tm}(\Pi(A,x.B(x))) \end{array}$

 $\frac{\Gamma \vdash A : \mathsf{Ty} \qquad \Gamma, x : \mathsf{Tm}(A) \vdash B : \mathsf{Ty} \qquad \Gamma, x : \mathsf{Tm}(A) \vdash t : \mathsf{Tm}(B)}{\Gamma \vdash \lambda(x.t) : \mathsf{Tm}(\Pi(A, x.B))}$

Erased arguments marked with $\{-\}$, erased from the syntax but present in typing

$$\begin{array}{ll} \lambda: \{A:\mathsf{Ty}\}\{B:(x:\mathsf{Tm}(A))\to\mathsf{Ty}\} & \stackrel{|-|}{\longmapsto} & \lambda:: \ (\mathtt{t}::(x:\mathtt{tm})\to\mathtt{tm})\to\mathtt{tm}\\ (\mathtt{t}:(x:\mathsf{Tm}(A))\to\mathsf{Tm}(B(x)))\to\mathsf{Tm}(\Pi(A,x.B(x))) \end{array}$$

$$\frac{\Gamma \vdash A : \mathsf{Ty} \qquad \Gamma, x : \mathsf{Tm}(A) \vdash B : \mathsf{Ty} \qquad \Gamma, x : \mathsf{Tm}(A) \vdash t : \mathsf{Tm}(B)}{\Gamma \vdash \lambda(x.t) : \mathsf{Tm}(\Pi(A, x.B))}$$

Problem They jeopardize decidability of typing. Guess arguments?

- $\Gamma \vdash t \leftarrow T$ Check (input: Γ, t, T)
- $\Gamma \vdash t \Rightarrow T$ Infer (input: Γ, t) (output: T)

$$\Gamma \vdash t \leftarrow T$$
 Check (input: Γ, t, T)

$$\Gamma \vdash t \Rightarrow T$$
 Infer (input: Γ, t) (output: T)

Allow specify flow of type information in typing rules

$$\frac{C \longrightarrow^* \Pi(A, x.B) \qquad \Gamma, x : \mathsf{Tm}(A) \vdash t \Leftarrow \mathsf{Tm}(B)}{\Gamma \vdash \lambda(x.t) \Leftarrow \mathsf{Tm}(C)}$$

$$\Gamma \vdash t \leftarrow T$$
 Check (input: Γ, t, T)

$$\Gamma \vdash t \Rightarrow T$$
 Infer (input: Γ, t) (output: T)

Allow specify flow of type information in typing rules

$$\frac{C \longrightarrow^* \Pi(A, x.B) \qquad \Gamma, x : \mathsf{Tm}(A) \vdash t \leftarrow \mathsf{Tm}(B)}{\Gamma \vdash \lambda(x.t) \leftarrow \mathsf{Tm}(C)}$$

Complement erased arguments very well, explains why they are redundant

$$\Gamma \vdash t \leftarrow T$$
 Check (input: Γ, t, T)

$$\Gamma \vdash t \Rightarrow T$$
 Infer (input: Γ, t) (output: T)

Allow specify flow of type information in typing rules

$$\frac{C \longrightarrow^* \Pi(A, x.B) \qquad \Gamma, x : \mathsf{Tm}(A) \vdash t \Leftarrow \mathsf{Tm}(B)}{\Gamma \vdash \lambda(x.t) \Leftarrow \mathsf{Tm}(C)}$$

Complement erased arguments very well, explains why they are redundant

Previous work Principles of (dependent) bidirectional typing well-known However, no generic framework (as far as I know)

$$\Gamma \vdash t \leftarrow T$$
 Check (input: Γ, t, T)

$$\Gamma \vdash t \Rightarrow T$$
 Infer (input: Γ, t) (output: T)

Allow specify flow of type information in typing rules

$$\frac{C \longrightarrow^* \Pi(A, x.B) \qquad \Gamma, x : \mathsf{Tm}(A) \vdash t \Leftarrow \mathsf{Tm}(B)}{\Gamma \vdash \lambda(x.t) \Leftarrow \mathsf{Tm}(C)}$$

Complement erased arguments very well, explains why they are redundant

Previous work Principles of (dependent) bidirectional typing well-known

However, no generic framework (as far as I know)

LFs can be used for this!

Can be instantiated by turning theory into a *moded theory* Each erased argument needs to appear in a *rigid* pattern

Can be instantiated by turning theory into a *moded theory* Each erased argument needs to appear in a *rigid* pattern

✓ Sound (assuming confluence, subject reduction and theory is well typed)

Can be instantiated by turning theory into a *moded theory* Each erased argument needs to appear in a *rigid* pattern

- \checkmark Sound (assuming confluence, subject reduction and theory is well typed)
- ✓ Complete for *well-moded terms* (assuming also strong normalisation)

Can be instantiated by turning theory into a *moded theory* Each erased argument needs to appear in a *rigid* pattern

Sound (assuming confluence, subject reduction and theory is well typed)
 Complete for *well-moded terms* (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

Can be instantiated by turning theory into a *moded theory* Each erased argument needs to appear in a *rigid* pattern

Sound (assuming confluence, subject reduction and theory is well typed)
 Complete for *well-moded terms* (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

 $\lambda^{-} : \{A : Ty\}\{B : (x : Tm(A)) \to Ty\}$ $(t : (x : Tm(A)) \to Tm(B(x)))^{-} \to Tm(\Pi(A, x.B(x)))$ $C \longrightarrow^{*} \Pi(A, x.B)$ $\Gamma, x : Tm(A) \vdash t \leftarrow Tm(B)$

 $\Gamma \vdash \lambda(x.t) \Leftarrow \mathsf{Tm}(C)$

Well-moded = β -normal forms

Can be instantiated by turning theory into a *moded theory* Each erased argument needs to appear in a *rigid* pattern

Sound (assuming confluence, subject reduction and theory is well typed)
 Complete for *well-moded terms* (assuming also strong normalisation)

You, the theory designer, chooses amount of annotations and completeness

 $\lambda^{-} : \{A : \mathsf{Ty}\}\{B : (x : \mathsf{Tm}(A)) \to \mathsf{Ty}\} \qquad \lambda^{+} : (A : \mathsf{Ty})^{-}\{B : (x : \mathsf{Tm}(A)) \to \mathsf{Ty}\} \\ (\mathfrak{t} : (x : \mathsf{Tm}(A)) \to \mathsf{Tm}(B(x)))^{-} \to \mathsf{Tm}(\Pi(A, x.B(x))) \qquad (\mathfrak{t} : (x : \mathsf{Tm}(A)) \to \mathsf{Tm}(B(x)))^{+} \to \mathsf{Tm}(\Pi(A, x.B(x))) \\ \hline C \longrightarrow^{*} \Pi(A, x.B) \qquad \Gamma \vdash A \Leftarrow \mathsf{Ty} \\ \hline \Gamma, x : \mathsf{Tm}(A) \vdash t \Leftarrow \mathsf{Tm}(B) \\ \hline \Gamma \vdash \lambda(x.t) \Leftarrow \mathsf{Tm}(C) \qquad \Gamma \vdash \lambda(A, x.t) \Rightarrow \mathsf{Tm}(\Pi(A, x.B)) \\ \hline Well\text{-moded} = \beta\text{-normal forms} \qquad Well\text{-moded} = \text{all terms}$

10

```
(* Judgment forms *)
symbol Tv : *
symbol Tm (A : Ty)- : *
(* Dependent products (lambda not annotated) *)
symbol+ \Pi (A : Ty)- (B : (x : Tm A) Ty)- : Ty
symbol- \lambda {A : Ty} {B : (_ : Tm A) Ty} (t : (x : Tm A) Tm B(x)) - : Tm \Pi(A, x. B(x))
symbol+ @ {A : Ty} {B : (_ : Tm A) Ty} (t : Tm Π(A, x. B(x)))+ (u : Tm A)- : Tm B(u)
rew @(λ(x. $t(x)), $u) --> $t($u)
symbol+ T : Ty (* Auxiliary base type *)
(* Example *)
let church1 : Tm \Pi(\Pi(T, ..., T)) . \Pi(T, ..., T) := \lambda(f, \lambda(x, @(f, x)))
```

```
(* Gives error *)
(* let redex : Tm \Pi(T, ..., T) := \lambda(x, @(\lambda(y,y), x)) *)
(* Dependent products (lambda annotated) *)
symbol+ ∏' (A : Ty)- (B : (x : Tm A) Ty)- : Ty
symbol+ @'{A : Ty} {B : (_ : Tm A) Ty} (t : Tm Π'(A, x. B(x)))+ (u : Tm A)- : Tm B(u)
symbol+ \lambda' (A : Ty)- {B : (_ : Tm A) Ty} (t : (x : Tm A) Tm B(x))+ : Tm \Pi'(A. x. B(x))
rew @'(λ'($T. x. $t(x)), $u) --> $t($u)
(* Now it works! *)
type \lambda'(T, x. @'(\lambda'(T, y.y), x))
1.7k complf/test/wq6.complf 15:0 21%
```

[type] $\lambda'(T, x0. @'(\lambda'(T, x1. x1), x0)) : Tm(\Pi'(T, x0. T))$ thiago@thiago-work:~/git/complf\$

Fundamental (+4)

Beyond dependent products

```
(* Universe *)
symbol+ U : Ty
symbol+ El (A : Tm U)- : Tv
(* Equality type *)
symbol+ Eq (A : Ty)- (t : Tm A)- (u : Tm A)- : Ty
symbol- refl {A : Ty} {t : Tm A} : Tm Eq(A, t, t)
symbol+ J {A : Ty} {a : Tm A} {b : Tm A} (t : Tm Eq(A, a, b))+
        (P : (x : Tm A, y : Tm Eq(A, a, x)) Ty)- (prefl : Tm P(a, refl))- : Tm P(b, t)
rew J(refl. x v. SP(x. v). Sprefl) --> Sprefl
(* Code in U for Eq *)
symbol+ eg (a : Tm U)- (x : Tm El(a))- (v : Tm El(a))- : Tm U
rew El(eq(\hat{s}_a, \hat{s}_x, \hat{s}_y)) --> Eq(El(\hat{s}_a), \hat{s}_x, \hat{s}_y)
(* Properties of equality *)
let svm : Tm \Pi(U. a. \Pi(El(a), x. \Pi(El(a), y. \Pi(Eq(El(a), x, y), \_. Eq(El(a), y, x)))))
     := \lambda(a, \lambda(x, \lambda(y, \lambda(p, J(p, z q, Eq(El(a), z, x), refl))))
let transp : Tm \Pi(U, a. \Pi(U, b. \Pi(Eq(U, a, b), . \Pi(El(a), . El(b)))))
    := \lambda(a. \lambda(b. \lambda(p. \lambda(x. J(p, z q. El(z), x)))))
```

Beyond dependent products

```
(* Universe *)
symbol+ U : Tv
symbol+ El (A : Tm U)- : Tv
(* Equality type *)
symbol+ Eq (A : Ty)- (t : Tm A)- (u : Tm A)- : Ty
symbol- refl {A : Ty} {t : Tm A} : Tm Eq(A, t, t)
symbol+ J {A : Ty} {a : Tm A} {b : Tm A} (t : Tm Eq(A, a, b))+
       (P : (x : Tm A, y : Tm Eq(A, a, x)) Ty)- (prefl : Tm P(a, refl))- : Tm P(b, t)
rew J(refl. x v. SP(x. v). Sprefl) --> Sprefl
(* Code in U for Ea *)
symbol+ eq (a : Tm U)- (x : Tm El(a))- (y : Tm El(a))- : Tm U
rew El(eq(\hat{s}_a, \hat{s}_x, \hat{s}_y)) --> Eq(El(\hat{s}_a), \hat{s}_x, \hat{s}_y)
(* Properties of equality *)
let sym : Tm \Pi(U, a, \Pi(El(a), x, \Pi(El(a), y, \Pi(Eq(El(a), x, y), \_, Eq(El(a), y, x)))))
     := \lambda(a, \lambda(x, \lambda(y, \lambda(p, J(p, z q, Eq(El(a), z, x), refl))))
let transp : Tm \Pi(U, a. \Pi(U, b. \Pi(Eq(U, a, b), . \Pi(El(a), . El(b)))))
    := \lambda(a. \lambda(b. \lambda(p. \lambda(x. J(p, z q. El(z), x)))))
But also other types (\Sigma, List, Nat,...), cumulative universes, universe polymor-
phism, higher-order logic, etc.
```

Conclusion

CompLF Logical framework for computational type theories Support for non-annotated theories, faithful presentation of syntax

Customisable bidirectional typing algorithm

Prototype implementation at https://github.com/thiagofelicissimo/complf

Thank you for your attention!