
BUıLDıNG AN ELABORATOR
UſıNG EXTENſıBLE CONſTRAıNTſ

Bohdan Liesnikov and Jesper Cockx

TU Delft, Delft, Netherlands

June 12th, 2023

1



🐥🐍

2



🐥I want to implement a dependently‑typed language!

But do you know what it’ll look like?🐍
🐥Not yet, but I’ll make it modular so I can build it step by step!

But we want the core to be stable! Figuring it out is hard enough🐍
🐥Then we’ll fix the core language but make the elaborator modular!

3



🐥I want to implement a dependently‑typed language!

But do you know what it’ll look like?🐍

🐥Not yet, but I’ll make it modular so I can build it step by step!

But we want the core to be stable! Figuring it out is hard enough🐍
🐥Then we’ll fix the core language but make the elaborator modular!

3



🐥I want to implement a dependently‑typed language!

But do you know what it’ll look like?🐍
🐥Not yet, but I’ll make it modular so I can build it step by step!

But we want the core to be stable! Figuring it out is hard enough🐍
🐥Then we’ll fix the core language but make the elaborator modular!

3



🐥I want to implement a dependently‑typed language!

But do you know what it’ll look like?🐍
🐥Not yet, but I’ll make it modular so I can build it step by step!

But we want the core to be stable! Figuring it out is hard enough🐍

🐥Then we’ll fix the core language but make the elaborator modular!

3



🐥I want to implement a dependently‑typed language!

But do you know what it’ll look like?🐍
🐥Not yet, but I’ll make it modular so I can build it step by step!

But we want the core to be stable! Figuring it out is hard enough🐍
🐥Then we’ll fix the core language but make the elaborator modular!

3



ELABORATOR UNDER ATTACĸ

Parsing Elaboration Core typechecking

type inference
implicit arguments
typeclass resolution
tactics

4



HOW DO WE DEſıGN THE ELABORATOR?

5



HOW DO WE DEſıGN THE ELABORATOR?

Elaborators typically consists of
‑ a syntax traversal
‑ unifier
‑ constraints machinery

▶ Which parts can we make more modular?
▶ Can we mediate the interactions?

6



HOW DO WE DEſıGN THE ELABORATOR?

Elaborators typically consists of
‑ a syntax traversal
‑ unifier
‑ constraints machinery

▶ Which parts can we make more modular?
▶ Can we mediate the interactions?

6



CONſTRAıNTſ ıN HAſĸELL

W = empty
| W1, W2 # conjunction
| C t1 .. tn # type class constraint
| t1 ~ t2 # equality constraint
| ∀a1..an. W1 => W2 # implication constraint

7



CONſTRAıNTſ ıN AGDA

W = ValueCmp t1 t2 # eq comparison
| ElimCmp typ t1 e1 e2 # elim comparison
| SortCmp s1 s2 # (type) sort comparisons
| LevelCmp l1 l2 # (type) level comparisons
| UnBlock m1 # Meta created for a term blocked
| FindInstance m1 c # type class instances
| CheckFunDef ... # couldn't check a function def because
| UnquoteTactic ...
... # plenty more

8



CONſTRAıNTſ ıN AGDA

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

6

8

10

12

14

16

18
Nu

m
be

r o
f c

on
st

ra
in

ts

2.2.0

2.3.0 2.4.0

2.5.0

2.6.0
2.6.3

9



CONſTRAıNTſ ıN AGDA

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

6

8

10

12

14

16

18
Nu

m
be

r o
f c

on
st

ra
in

ts

2.2.0

2.3.0 2.4.0

2.5.0

2.6.0
2.6.3

1

1xkcd.com/605/
9

https://xkcd.com/605/


OUR ſOLUTıON

10



OUR DEſıGN

▶ Typechecker traverses the syntax and generates constraints
▶ The constraint datatype open (as in Data types à la carte [Swi08])
▶ Solvers are provided by the plug‑ins

Mantra: constraints are async function calls, metavariables are “promises”.

11



OUR CONſTRAıNTſ

▶ aiming for something in‑between in the core🐍+ your🐥extensions
CoreW = EqualityComparison t1 t2 ty m

| BlockedOnMeta m tc
| FillInMeta m ty
...

▶ both we🐍and you🐥supply the solvers

12



EXAMPLE: TYPE CLAſſEſ

13



TYPE CLAſſEſ: WHAT’ſ ıN THE BAſE🐍

inferType (App t1 t2) = do
(et1, Pi tyA tyB) <- inferType t1
et2 <- checkType t2 tyA
return (App et1 et2, subst tyB et2)

checkType (Implicit) ty = do
m <- createMetaTerm
raiseConstraint $ FillInTheMeta m ty
return m

14



TYPE CLAſſEſ: WHAT DOEſ THE UſER WRıTE

plus : {A : Type} -> {{PlusOperation A}}
-> (a : A) -> (b : A) -> A

instance PlusNat : PlusOperation Nat where
plus = plusNat

two = plus 1 1

15



TYPE CLAſſEſ: DEſUGARıNG UſER ıNPUT

plus : (impA : Implicit Type)
-> TypeClass PlusOperation (deImp impA)
-> (a : deImp impA) -> (b : deImp impA)
-> deImp impA

PlusNat = Instance {
class = PlusOperation Nat,
body = {plus = plusNat}}

two = plus _ _ 1 1

16



TYPE CLAſſEſ: ELABORATıNG THE PROGRAM

1. Create the metas:
two = plus ?_1 ?_2 1 1

2. Raise the constraints:
C1: FillInTheTerm ?_1 (Implicit Type)
C2: FillInTheTerm ?_2 (TypeClass PlusOperation (deImp ?_1))
C3: EqualityConstraint ?_1 Nat Type
C4: EqualityConstraint ?_1 Nat Type

17



TYPE CLAſſEſ: WRıTıNG THE PLUGıN🐥

tcHandler :: Constraint c -> MonadElab Bool

tcSolver :: Constraint c -> MonadElab Bool

tcSymbol = "type class instance search"

tc = Plugin { handler = tcHandler
, solver = tcSolver
, symbol = tcSymbol
, pre = []
, suc = []
}

18



TYPE CLAſſEſ: WRıTıNG THE PLUGıN🐥

tcHandler :: Constraint c -> MonadElab Bool

tcHandler constr = do
f <- match @FillInTheTerm constr
case f of
Just (FillInTheTerm _ (App (TCon "TypeClass") ...)) ->

return True
_ ->

return False

19



TYPE CLAſſEſ: WRıTıNG THE PLUGıN🐥

tcHandler :: (FillInTheTerm :<: c)
=> Constraint c -> MonadElab Bool

tcHandler constr = do
f <- match @FillInTheTerm constr
case f of
Just (FillInTheTerm _ (App (TCon "TypeClass") ...)) ->

return True
_ ->

return False

19



IMPLEMENTATıON

20



WHAT ıſ THıſ LANGUAGE: BAſE🐍

▶ DT language with Pi, Sigma types
▶ inductive types with indeces
▶ case‑constructs for elimination

21



WHAT ıſ THıſ LANGUAGE: ADDıTıONſ🐥

▶ implicit arguments with placeholder terms
▶ type classes
▶ tactic arguments?
▶ subtyping by coercion?
▶ row types?

22



CONCLUſıONſ AND QUEſTıONſ

23



CONCLUſıONſ AND QUEſTıONſ

github.com/liesnikov/extensible‑elaborator

▶ there’s a simple unifier implemented
▶ working on implicit arguments

24

https://github.com/liesnikov/extensible-elaborator


BACĸUP ſLıDEſ

25



OPEN QUEſTıONſ

▶ How far can you push these kinds of extensions? i.e. can you model
erasure inference?

▶ What if we allow plugins to have a custom store in the monad?
▶ Can we make the solver parallel?

26



PRıOR WORĸ
▶ Haskell

▶ plugins
▶ hooks
▶ was supposed to get dependent types

▶ Coq
▶ plugins don’t really have an interface
▶ not restricted in any way, if you go into ml space
▶ very confusing

▶ Lean
▶ uses macros to redefine symbols
▶ uses reflection and typechecking monads to define custom elaboration

procedures
▶ TypOS

▶ you have to buy into a whole new discipline
▶ we hope to keep things a bit more conventional engineering‑wise

27



OLD ARCHıTECTURE DıAGRAM

Solver1

reads metas, defs from Typechecker
infer check functions

raises
a constraint

write solution

provides a
to

read metas,
existing constraints?

provides
solution

State

Solver
Director constraint

solve

a

Solver2
28



HOW DO YOU MAĸE ſURE THE ſOLVERſ RUN ıN THE
RıGHT ORDER?

specify a (pre‑) order in which the solvers should run i.e. type classes run
after name disambiguation

29



WHAT DOEſ A PLUGıN LOOĸ LıĸE?
type PluginId = ...

type Solver cs = forall m. (MonadSolver cs m) =>
(Constraint cs) ->
m Bool

data Plugin cs = Plugin {
handler :: Handler cs,
solver :: Solver cs,
symbol :: PluginId,
pre :: [PluginId],
suc :: [PluginId]

}

30



WHY (BOTHER WıTH ſPLıTTıNG)

▶ at the moment the biggest “usual” solver is a conversion checker
▶ it typically ranges around 1.7kloc in Idris, Lean, Coq
▶ in Agda also results in a lot of intricacies in the codebase
▶ chains of nested calls with logic spread around

compareAs/compareTerm/compareAtom
▶ the need to manually catch and handle constraints at times

catchConstraint/patternViolation

31



WHY (OPEN ıT UP)

▶ get a relatively compact core of the elaborator
▶ build features around it as “extensions” or “plugins”
▶ allow cheaper experiments with the language
▶ main inspirations: Haskell [Jon+07; GHC], Matita [Tas+12]

Bottom line: this is a design study

32



REFERENCEſ I

[GHC] GHC development team. Glasgow Haskell Compiler 9.2.2 User’s
Guide: 7. Extending and Using GHC as a Library. URL:
https://downloads.haskell.org/ghc/latest/docs/html/users_
guide/extending_ghc.html (visited on 07/15/2022).

[Jon+07] Simon Peyton Jones et al. “Practical Type Inference for
Arbitrary‑Rank Types”. In: Journal of Functional Programming
17.1 (Jan. 2007), pp. 1–82. ıſſN: 1469‑7653, 0956‑7968. DOı:
10.1017/S0956796806006034. URL:
https://www.cambridge.org/core/journals/journal‑of‑
functional‑programming/article/practical‑type‑inference‑for‑
arbitraryrank‑types/5339FB9DAB968768874D4C20FA6F8CB6
(visited on 06/09/2022).

33

https://downloads.haskell.org/ghc/latest/docs/html/users_guide/extending_ghc.html
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/extending_ghc.html
https://doi.org/10.1017/S0956796806006034
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/practical-type-inference-for-arbitraryrank-types/5339FB9DAB968768874D4C20FA6F8CB6
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/practical-type-inference-for-arbitraryrank-types/5339FB9DAB968768874D4C20FA6F8CB6
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/practical-type-inference-for-arbitraryrank-types/5339FB9DAB968768874D4C20FA6F8CB6


REFERENCEſ II
[Swi08] Wouter Swierstra. “Data Types à La Carte”. In: Journal of

Functional Programming 18.4 (July 2008), pp. 423–436. ıſſN:
1469‑7653, 0956‑7968. DOı: 10.1017/S0956796808006758. URL:
https://www.cambridge.org/core/journals/journal‑of‑
functional‑programming/article/data‑types‑a‑la‑
carte/14416CB20C4637164EA9F77097909409 (visited on
06/09/2022).

[Tas+12] Enrico Tassi et al. “A Bi‑Directional Refinement Algorithm for
the Calculus of (Co)Inductive Constructions”. In: Logical Methods
in Computer Science Volume 8, Issue 1 (Mar. 2, 2012). DOı:
10.2168/LMCS‑8(1:18)2012. URL:
https://lmcs.episciences.org/1044/pdf (visited on 05/23/2022).

34

https://doi.org/10.1017/S0956796808006758
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/data-types-a-la-carte/14416CB20C4637164EA9F77097909409
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/data-types-a-la-carte/14416CB20C4637164EA9F77097909409
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/data-types-a-la-carte/14416CB20C4637164EA9F77097909409
https://doi.org/10.2168/LMCS-8(1:18)2012
https://lmcs.episciences.org/1044/pdf


[GHC] GHC development team. Glasgow Haskell Compiler 9.2.2 User’s
Guide: 7. Extending and Using GHC as a Library. URL:
https://downloads.haskell.org/ghc/latest/docs/html/users_
guide/extending_ghc.html (visited on 07/15/2022).

[Jon+07] Simon Peyton Jones et al. “Practical Type Inference for
Arbitrary‑Rank Types”. In: Journal of Functional Programming
17.1 (Jan. 2007), pp. 1–82. ıſſN: 1469‑7653, 0956‑7968. DOı:
10.1017/S0956796806006034. URL:
https://www.cambridge.org/core/journals/journal‑of‑
functional‑programming/article/practical‑type‑inference‑for‑
arbitraryrank‑types/5339FB9DAB968768874D4C20FA6F8CB6
(visited on 06/09/2022).

35

https://downloads.haskell.org/ghc/latest/docs/html/users_guide/extending_ghc.html
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/extending_ghc.html
https://doi.org/10.1017/S0956796806006034
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/practical-type-inference-for-arbitraryrank-types/5339FB9DAB968768874D4C20FA6F8CB6
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/practical-type-inference-for-arbitraryrank-types/5339FB9DAB968768874D4C20FA6F8CB6
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/practical-type-inference-for-arbitraryrank-types/5339FB9DAB968768874D4C20FA6F8CB6


[Swi08] Wouter Swierstra. “Data Types à La Carte”. In: Journal of
Functional Programming 18.4 (July 2008), pp. 423–436. ıſſN:
1469‑7653, 0956‑7968. DOı: 10.1017/S0956796808006758. URL:
https://www.cambridge.org/core/journals/journal‑of‑
functional‑programming/article/data‑types‑a‑la‑
carte/14416CB20C4637164EA9F77097909409 (visited on
06/09/2022).

[Tas+12] Enrico Tassi et al. “A Bi‑Directional Refinement Algorithm for
the Calculus of (Co)Inductive Constructions”. In: Logical Methods
in Computer Science Volume 8, Issue 1 (Mar. 2, 2012). DOı:
10.2168/LMCS‑8(1:18)2012. URL:
https://lmcs.episciences.org/1044/pdf (visited on 05/23/2022).

36

https://doi.org/10.1017/S0956796808006758
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/data-types-a-la-carte/14416CB20C4637164EA9F77097909409
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/data-types-a-la-carte/14416CB20C4637164EA9F77097909409
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/data-types-a-la-carte/14416CB20C4637164EA9F77097909409
https://doi.org/10.2168/LMCS-8(1:18)2012
https://lmcs.episciences.org/1044/pdf

	How do we design the elaborator?
	Our solution
	Example: type classes
	Implementation
	Conclusions and questions
	Backup slides

