
BUıLDıNG AN ELABORATOR
UſıNG EXTENſıBLE CONſTRAıNTſ

Bohdan Liesnikov and Jesper Cockx

TU Delft, Delft, Netherlands

June 12th, 2023

1



🐥🐍

2



🐥I want to implement a dependently‑typed language!

But do you know what it’ll look like?🐍
🐥Not yet, but I’ll make it modular so I can build it step by step!

But we want the core to be stable! Figuring it out is hard enough🐍
🐥Then we’ll fix the core language but make the elaborator modular!

3



🐥I want to implement a dependently‑typed language!

But do you know what it’ll look like?🐍

🐥Not yet, but I’ll make it modular so I can build it step by step!

But we want the core to be stable! Figuring it out is hard enough🐍
🐥Then we’ll fix the core language but make the elaborator modular!

3



🐥I want to implement a dependently‑typed language!

But do you know what it’ll look like?🐍
🐥Not yet, but I’ll make it modular so I can build it step by step!

But we want the core to be stable! Figuring it out is hard enough🐍
🐥Then we’ll fix the core language but make the elaborator modular!

3



🐥I want to implement a dependently‑typed language!

But do you know what it’ll look like?🐍
🐥Not yet, but I’ll make it modular so I can build it step by step!

But we want the core to be stable! Figuring it out is hard enough🐍

🐥Then we’ll fix the core language but make the elaborator modular!

3



🐥I want to implement a dependently‑typed language!

But do you know what it’ll look like?🐍
🐥Not yet, but I’ll make it modular so I can build it step by step!

But we want the core to be stable! Figuring it out is hard enough🐍
🐥Then we’ll fix the core language but make the elaborator modular!

3



ELABORATOR UNDER ATTACĸ

Parsing Elaboration Core typechecking

type inference
implicit arguments
typeclass resolution
tactics
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HOW DO WE DEſıGN THE ELABORATOR?
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HOW DO WE DEſıGN THE ELABORATOR?

Elaborators typically consists of
‑ a syntax traversal
‑ unifier
‑ constraints machinery

▶ Which parts can we make more modular?
▶ Can we mediate the interactions?
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CONſTRAıNTſ ıN HAſĸELL

W = empty
| W1, W2 # conjunction
| C t1 .. tn # type class constraint
| t1 ~ t2 # equality constraint
| ∀a1..an. W1 => W2 # implication constraint
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CONſTRAıNTſ ıN AGDA

W = ValueCmp t1 t2 # eq comparison
| ElimCmp typ t1 e1 e2 # elim comparison
| SortCmp s1 s2 # (type) sort comparisons
| LevelCmp l1 l2 # (type) level comparisons
| UnBlock m1 # Meta created for a term blocked
| FindInstance m1 c # type class instances
| CheckFunDef ... # couldn't check a function def because
| UnquoteTactic ...
... # plenty more

8



CONſTRAıNTſ ıN AGDA
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OUR ſOLUTıON
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OUR DEſıGN

▶ Typechecker traverses the syntax and generates constraints
▶ The constraint datatype open (as in Data types à la carte [Swi08])
▶ Solvers are provided by the plug‑ins

Mantra: constraints are async function calls, metavariables are “promises”.
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OUR CONſTRAıNTſ

▶ aiming for something in‑between in the core🐍+ your🐥extensions
CoreW = EqualityComparison t1 t2 ty m

| BlockedOnMeta m tc
| FillInMeta m ty
...

▶ both we🐍and you🐥supply the solvers
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EXAMPLE: TYPE CLAſſEſ
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TYPE CLAſſEſ: WHAT’ſ ıN THE BAſE🐍

inferType (App t1 t2) = do
(et1, Pi tyA tyB) <- inferType t1
et2 <- checkType t2 tyA
return (App et1 et2, subst tyB et2)

checkType (Implicit) ty = do
m <- createMetaTerm
raiseConstraint $ FillInTheMeta m ty
return m
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TYPE CLAſſEſ: WHAT DOEſ THE UſER WRıTE

plus : {A : Type} -> {{PlusOperation A}}
-> (a : A) -> (b : A) -> A

instance PlusNat : PlusOperation Nat where
plus = plusNat

two = plus 1 1
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TYPE CLAſſEſ: DEſUGARıNG UſER ıNPUT

plus : (impA : Implicit Type)
-> TypeClass PlusOperation (deImp impA)
-> (a : deImp impA) -> (b : deImp impA)
-> deImp impA

PlusNat = Instance {
class = PlusOperation Nat,
body = {plus = plusNat}}

two = plus _ _ 1 1
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TYPE CLAſſEſ: ELABORATıNG THE PROGRAM

1. Create the metas:
two = plus ?_1 ?_2 1 1

2. Raise the constraints:
C1: FillInTheTerm ?_1 (Implicit Type)
C2: FillInTheTerm ?_2 (TypeClass PlusOperation (deImp ?_1))
C3: EqualityConstraint ?_1 Nat Type
C4: EqualityConstraint ?_1 Nat Type
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TYPE CLAſſEſ: WRıTıNG THE PLUGıN🐥

tcHandler :: Constraint c -> MonadElab Bool

tcSolver :: Constraint c -> MonadElab Bool

tcSymbol = "type class instance search"

tc = Plugin { handler = tcHandler
, solver = tcSolver
, symbol = tcSymbol
, pre = []
, suc = []
}
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TYPE CLAſſEſ: WRıTıNG THE PLUGıN🐥

tcHandler :: Constraint c -> MonadElab Bool

tcHandler constr = do
f <- match @FillInTheTerm constr
case f of
Just (FillInTheTerm _ (App (TCon "TypeClass") ...)) ->

return True
_ ->

return False
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TYPE CLAſſEſ: WRıTıNG THE PLUGıN🐥

tcHandler :: (FillInTheTerm :<: c)
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IMPLEMENTATıON
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WHAT ıſ THıſ LANGUAGE: BAſE🐍

▶ DT language with Pi, Sigma types
▶ inductive types with indeces
▶ case‑constructs for elimination
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WHAT ıſ THıſ LANGUAGE: ADDıTıONſ🐥

▶ implicit arguments with placeholder terms
▶ type classes
▶ tactic arguments?
▶ subtyping by coercion?
▶ row types?
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CONCLUſıONſ AND QUEſTıONſ
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CONCLUſıONſ AND QUEſTıONſ

github.com/liesnikov/extensible‑elaborator

▶ there’s a simple unifier implemented
▶ working on implicit arguments
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BACĸUP ſLıDEſ
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OPEN QUEſTıONſ

▶ How far can you push these kinds of extensions? i.e. can you model
erasure inference?

▶ What if we allow plugins to have a custom store in the monad?
▶ Can we make the solver parallel?
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PRıOR WORĸ
▶ Haskell

▶ plugins
▶ hooks
▶ was supposed to get dependent types

▶ Coq
▶ plugins don’t really have an interface
▶ not restricted in any way, if you go into ml space
▶ very confusing

▶ Lean
▶ uses macros to redefine symbols
▶ uses reflection and typechecking monads to define custom elaboration

procedures
▶ TypOS

▶ you have to buy into a whole new discipline
▶ we hope to keep things a bit more conventional engineering‑wise
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OLD ARCHıTECTURE DıAGRAM

Solver1

reads metas, defs from Typechecker
infer check functions

raises
a constraint

write solution

provides a
to

read metas,
existing constraints?

provides
solution

State

Solver
Director constraint

solve

a

Solver2
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HOW DO YOU MAĸE ſURE THE ſOLVERſ RUN ıN THE
RıGHT ORDER?

specify a (pre‑) order in which the solvers should run i.e. type classes run
after name disambiguation
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WHAT DOEſ A PLUGıN LOOĸ LıĸE?
type PluginId = ...

type Solver cs = forall m. (MonadSolver cs m) =>
(Constraint cs) ->
m Bool

data Plugin cs = Plugin {
handler :: Handler cs,
solver :: Solver cs,
symbol :: PluginId,
pre :: [PluginId],
suc :: [PluginId]

}

30



WHY (BOTHER WıTH ſPLıTTıNG)

▶ at the moment the biggest “usual” solver is a conversion checker
▶ it typically ranges around 1.7kloc in Idris, Lean, Coq
▶ in Agda also results in a lot of intricacies in the codebase
▶ chains of nested calls with logic spread around

compareAs/compareTerm/compareAtom
▶ the need to manually catch and handle constraints at times

catchConstraint/patternViolation
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WHY (OPEN ıT UP)

▶ get a relatively compact core of the elaborator
▶ build features around it as “extensions” or “plugins”
▶ allow cheaper experiments with the language
▶ main inspirations: Haskell [Jon+07; GHC], Matita [Tas+12]

Bottom line: this is a design study
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