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Modularity is a key concern in functional programming
languages

• The Expression Problem: how to extend recursive data
and functions in a type-safe way

• Defining monadic effects in a modular way
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In practice, these modularity concerns are often addressed by
embedding the Initial Semantics of inductive data types

data Fix (F : Set → Set) : Set where
In : F (Fix F) → Fix F

data Free (F : Set → Set) A : Set where
Pure : A → Free F A
Impure : F (Free F A) → Free F A
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The Same ideas work for higher-order functors

data Fix (H : (Set → Set) → Set → Set) A : Set where
In : H (Fix H) A → Fix H A

data Prog (H : (Set → Set) → Set → Set) A : Set where
Pure : A → Prog H A
Impure : H (Prog H) A → Prog H A

Such structures are used e.g. to encode nested data types1 or
Scoped Effects2

1Bird and Meertens, 1998
2Wu et al., 2014
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These techniques are tremendously useful, but it’s unfortunate
that we have to rely on embeddings to use them

• Adds some noise compared to built-in data types,
interoperability through isomorphisms

• Connection to the underlying theory remains implicit
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How would we design a programming language that has type
safe modularity for data types built in?
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This work

Here, we work towards laying the groundwork for developing
programming languages with built-in support for type-safe
modularity

How? By designing a calculus that captures the essential
features of type-safe modularity for data types
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Calculus Design

A λ-calculus with rank-1 polymorphism and kinds

Well-kindedness for types is defined such that all type formers
with kind k1 → k2 are a functor

Built-in primitives for mapping and folding
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Types

k := ⋆ | k → k
τ := α | τ τ | λα.τ | µ(τ) | τ ⇒ τ | > | ⊥ | τ ⊗ τ | τ ⊕ τ
σ := ∀α.σ | τ

∆ | Φ ` τ : k

K-Abs
∆ | Φ, (α 7→ k1) ` τ : k2

∆ | Φ ` λα.τ : k1 → k2

K-Fun
∆ | ∅ ` τ1 : ⋆ ∆ | Φ ` τ2 : ⋆

∆ | Φ ` τ1 ⇒ τ2 : ⋆
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Example: Free Monad

Free ≜ λf.λa.µ(λX.a ⊕ f X) : (⋆ → ⋆) → ⋆ → ⋆

By construction, Free is a functor in both f and a.

The former means that we can apply natural transformations
to change the monad’s signature.
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Terms

M := . . . | in | out | map⟨M⟩τ | L M Mτ
| π1 | π2 | M ▲▲▲ M | ι1 | ι2 | M ▼▼▼ M | tt | absurd

These primitives have both first and higher order instances

How to type the higher-order instances of these language
primitives?
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Arrow Types

τ1
⋆−→ τ2 ≜ τ1 ⇒ τ2

τ1
k1→k2−→ τ2 ≜ ∀α.τ1 α

k2−→ τ2 α

An arrow type, τ1
k−→ τ2 at kind k describes a morphism

between the “objects” of kind k

I.e., for k = ⋆ it’s functions, and for k = ⋆ → ⋆ it’s natural
transformations between functors on Set, etcetera ...
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T-Fst
τ1, τ2 : k

Γ ` π1 : τ1
k−→ τ2

T-Map
τ : k1 → k2 τ1, τ2 : k1 Γ ` M : τ1

k1−→ τ2

Γ ` map⟨M⟩τ : τ τ1
k2−→ τ τ2
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Semantics

• Interpret types as objects in Set and its functor
categories

• Interpret terms as natural transformations from a the
functor interpreting its context to a functor interpreting
its type
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Kinds: J − K : Kind → CatJ ⋆ K = SetJk1 → k2K = [Jk1K, Jk2K]

Types:

J∆ | Φ ` τ : kK : (J∆Kop × J∆K)× JΦK → JkK
J∆ ` σK : J∆Kop × J∆K → Set

Terms:

JΓ ` M : σK : Nat(JΓK, JτK)
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Arrow Type Semantis

Function types are interpreted as exponential objects and
universal quantifications as ends

Consequently:

Jτ1
k−→ τ2K(X,Y)

7→
∫

X1

. . .

∫
Xn

Jτ2K(X,Y)(X1, . . . ,Xn)
Jτ1K(X,Y)(X1,...,Xn)
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Take the primitive π1 at kind k. To define its semantics, we
would like to appeal to the cartesian structure of JkK
But π1 has an arrow type, whose semantics is a functor into
Set

Thus, we must show that the semantics of an arrow type
τ1

k−→ τ2 internalizes the morphisms between Jτ1K and Jτ2K inJkK as an object in Set
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“Currying” for Arrow Types

JkK(X × Jτ1K, Jτ2K) ' Set(X, Jτ1
k−→ τ2K)
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Operational Model

We can extract an operational model from the categorical
model by looking the equations we get on the categorical side

L M Mτ (in N) −→ M (map⟨L M Mτ⟩τ N)

(M1 ▼▼▼ M2) (ι1 N) −→ M1 N

Can we say something about how “good” this operational
model is (e.g., preservation, progress, ...)
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Conclusion

We designed a calculus that can capture many existing
programming patterns for modularity

But, there’s plenty to do still:
• Categorical model is tied to Set, would like to generalize
• More formal connection between categorical and

operational model
• Increased expressiveness using generalized or adjoint folds
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