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Modularity is a key concern in functional programming
languages

e The Expression Problem: how to extend recursive data
and functions in a type-safe way

e Defining monadic effects in a modular way
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In practice, these modularity concerns are often addressed by
embedding the Initial Semantics of inductive data types

data Fix (F : Set — Set) : Set where
In: F(Fix F) — Fix F

data Free (F : Set — Set) A : Set where
Pure : A— Free FA
Impure : F (Free F A) — Free F A
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The Same ideas work for higher-order functors

data Fix (H : (Set — Set) — Set — Set) A : Set where
In: H (Fix H) A — Fix H A

data Prog (H : (Set — Set) — Set — Set) A : Set where
Pure : A— Prog HA
Impure : H (Prog H) A — Prog H A

Such structures are used e.g. to encode nested data types' or
Scoped Effects?

IBird and Meertens, 1998
2Wu et al., 2014
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These techniques are tremendously useful, but it's unfortunate
that we have to rely on embeddings to use them

e Adds some noise compared to built-in data types,
interoperability through isomorphisms

e Connection to the underlying theory remains implicit
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How would we design a programming language that has type
safe modularity for data types built in?
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This work

Here, we work towards laying the groundwork for developing
programming languages with built-in support for type-safe
modularity

How? By designing a calculus that captures the essential
features of type-safe modularity for data types
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Calculus Design

A \-calculus with rank-1 polymorphism and kinds

Well-kindedness for types is defined such that all type formers
with kind k; — k, are a functor

Built-in primitives for mapping and folding
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Types
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Example: Free Monad

Free & Mapu(AX.a® fX): (x = %) = x — %
By construction, Free is a functor in both fand a.

The former means that we can apply natural transformations
to change the monad'’s signature.
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Terms

M = ...|in|out|map(M)" | (M)"
| |7 | MAM|t ]|t MY M|tt|absurd
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Terms

M = ...|in|out|map(M)" | (M)"
| |7 | MAM|t ]|t MY M|tt|absurd
These primitives have both first and higher order instances

How to type the higher-order instances of these language
primitives?

11/20



Arrow Types

*
TT—>T = T1=>TN
ki —k A ko
T1 —)1 : T2 = \V/Oz.Tl o —r To (X

An arrow type, 11 LN 7o at kind k describes a morphism
between the “objects” of kind k

|.e., for k = % it's functions, and for k = x — % it's natural
transformations between functors on SET, etcetera ...
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T-FsT
T1,T2 k

k
ltmmn — o

T-MAP
71 ki — ko T1, T & ky r}—MZTli>7'2

F'Emap(M)™ : 71y £>7'7'2
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Semantics

e Interpret types as objects in SET and its functor
categories

e Interpret terms as natural transformations from a the
functor interpreting its context to a functor interpreting

its type
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Kinds:

[-1 : Kind— Cat
[x] = SET
[k = k] = [[kl] [k]]
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Kinds:

[-1 : Kind— Cat
[x] = SET
[k = k] = [[kl] [k]]

Types:
[A|®F Tk :([A] x [A]) x [¢] — [A]

[At o] : [A]®® x [A] — SET
Terms:

[F'=M:a]: Nat([l], [7])
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Arrow Type Semantis

Function types are interpreted as exponential objects and
universal quantifications as ends

Consequently:

[ -5 B)(X. V)

= / e [[T2]] (X7 Y)(X17 v 7Xn)[[71]](X’Y)(X17m7Xn)
Xl Xn
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Take the primitive 7r; at kind k. To define its semantics, we
would like to appeal to the cartesian structure of [k]

But 7r; has an arrow type, whose semantics is a functor into
SET

Thus, we must show that the semantics of an arrow type

K . , : :
T1 — T internalizes the morphisms between [71] and [72] in
[k] as an object in SET
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“Currying” for Arrow Types

[K(X x [71], [72]) =~ SET(X, [1 —= 7])
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Operational Model

We can extract an operational model from the categorical
model by looking the equations we get on the categorical side
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Operational Model

We can extract an operational model from the categorical
model by looking the equations we get on the categorical side

[ M)7 (in N) — M (map{( M)7)" N)

(Ml v MQ) (Ll N) — Ml N

Can we say something about how “good” this operational
model is (e.g., preservation, progress, ...)
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Conclusion

We designed a calculus that can capture many existing
programming patterns for modularity

But, there's plenty to do still:
e Categorical model is tied to SET, would like to generalize
e More formal connection between categorical and
operational model
e Increased expressiveness using generalized or adjoint folds
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