Introduction

Types and Semantics for Extensible Data
Types

Cas van der Rest Casper Bach Poulsen

June 15, 2023

1/20

Modularity is a key concern in functional programming
languages

2/20

Modularity is a key concern in functional programming
languages

e The Expression Problem: how to extend recursive data
and functions in a type-safe way

2/20

Modularity is a key concern in functional programming
languages

e The Expression Problem: how to extend recursive data
and functions in a type-safe way

e Defining monadic effects in a modular way

2/20

In practice, these modularity concerns are often addressed by
embedding the Initial Semantics of inductive data types

data Fix (F : Set — Set) : Set where
In: F(Fix F) — Fix F

data Free (F : Set — Set) A : Set where
Pure : A— Free FA
Impure : F (Free F A) — Free F A

3/20

The Same ideas work for higher-order functors

data Fix (H : (Set — Set) — Set — Set) A : Set where
In: H (Fix H) A — Fix H A

data Prog (H : (Set — Set) — Set — Set) A : Set where
Pure : A— Prog HA
Impure : H (Prog H) A — Prog H A

Such structures are used e.g. to encode nested data types' or
Scoped Effects?

IBird and Meertens, 1998
2Wu et al., 2014

4/20

These techniques are tremendously useful, but it's unfortunate
that we have to rely on embeddings to use them

e Adds some noise compared to built-in data types,
interoperability through isomorphisms

e Connection to the underlying theory remains implicit

5/20

How would we design a programming language that has type
safe modularity for data types built in?

6/20

This work

Here, we work towards laying the groundwork for developing
programming languages with built-in support for type-safe
modularity

How? By designing a calculus that captures the essential
features of type-safe modularity for data types

7/20

Calculus Design

A \-calculus with rank-1 polymorphism and kinds

Well-kindedness for types is defined such that all type formers
with kind k; — k, are a functor

Built-in primitives for mapping and folding

8/20

Types

ki=x%|k—k
Ti=al|rT| AT |p(r)|T=T7|T|L|t@T |77
o:=Va.o|T

9/20

Types

ki=x%|k—k

r=al|rT|dT|pu(n) | T=7|T|L|7@7|7ET
o:=Va.o|T

A|dFT:k

K-ABs K-
A (a— k)71 ko A|DFET1:x A|dETr:x
A|dF Ntk — ky A|ldbEr =7 *

Fun
| 0

9/20

Example: Free Monad

Free & Mapu(AX.a® fX): (x = %) = x — %
By construction, Free is a functor in both fand a.

The former means that we can apply natural transformations
to change the monad'’s signature.

10/20

Terms

M = ...|in|out|map(M)" | (M)"
| |7 | MAM|t]|t MY M|tt|absurd

11/20

Terms

M = ...|in|out|map(M)" | (M)"
| |7 | MAM|t]|t MY M|tt|absurd
These primitives have both first and higher order instances

How to type the higher-order instances of these language
primitives?

11/20

Arrow Types

*
TT—>T = T1=>TN
ki —k A ko
T1 —)1 : T2 = \V/Oz.Tl o —r To (X

An arrow type, 11 LN 7o at kind k describes a morphism
between the “objects” of kind k

|.e., for k = % it's functions, and for k = x — % it's natural
transformations between functors on SET, etcetera ...

12/20

T-FsT
T1,T2 k

k
ltmmn — o

13/20

T-FsT
T1,T2 k

k
ltmmn — o

T-MAP
71 ki — ko T1, T & ky r}—MZTli>7'2

F'Emap(M)™ : 71y £>7'7'2

13/20

Semantics

e Interpret types as objects in SET and its functor
categories

e Interpret terms as natural transformations from a the
functor interpreting its context to a functor interpreting

its type

14/20

Kinds:

[-1 : Kind— Cat
[x] = SET
[k = k] = [[kl] [k]]

15/20

Kinds:

[-1 : Kind— Cat
[x] = SET
[k = k] = [[kl] [k]]

Types:
[A|®F Tk :([A] x [A]) x [¢] — [A]

[AF o] : [A]® x [A] — SET

15/20

Kinds:

[-1 : Kind— Cat
[x] = SET
[k = k] = [[kl] [k]]

Types:
[A|®F Tk :([A] x [A]) x [¢] — [A]

[At o] : [A]®® x [A] — SET
Terms:

[F'=M:a]: Nat([l], [7])

15/20

Arrow Type Semantis

Function types are interpreted as exponential objects and
universal quantifications as ends

Consequently:

[-5 B)(X. V)

= / e [[T2]] (X7 Y)(X17 v 7Xn)[[71]](X’Y)(X17m7Xn)
Xl Xn

16/20

Take the primitive 7r; at kind k. To define its semantics, we
would like to appeal to the cartesian structure of [k]

But 7r; has an arrow type, whose semantics is a functor into
SET

Thus, we must show that the semantics of an arrow type

K . , : :
T1 — T internalizes the morphisms between [71] and [72] in
[k] as an object in SET

17/20

“Currying” for Arrow Types

[K(X x [71], [72]) =~ SET(X, [1 —= 7])

18/20

Operational Model

We can extract an operational model from the categorical
model by looking the equations we get on the categorical side

19/20

Operational Model

We can extract an operational model from the categorical
model by looking the equations we get on the categorical side

[M)7 (in N) — M (map{(M)7)" N)

(Ml v MQ) (Ll N) — Ml N

19/20

Operational Model

We can extract an operational model from the categorical
model by looking the equations we get on the categorical side

[M)7 (in N) — M (map{(M)7)" N)

(Ml v MQ) (Ll N) — Ml N

Can we say something about how “good” this operational
model is (e.g., preservation, progress, ...)

19/20

Conclusion

We designed a calculus that can capture many existing
programming patterns for modularity

But, there's plenty to do still:
e Categorical model is tied to SET, would like to generalize
e More formal connection between categorical and
operational model
e Increased expressiveness using generalized or adjoint folds

20/20

