Read the mode and stay positive

Towards internal positivity annotations

Malin Altenmiiller! Joris Ceulemans? Lucas Escot3

Andreas Nuyts> Josselin Poiret*

LUniversity of Strathclyde, Scotland
2imec-DistriNet, KU Leuven, Belgium
3TU Delft, Netherlands

4ENS de Lyon, France

June 15, 2023

data N : Set where
zero : N
succ : N > N

data N : Set where
zero : N
succ : N > N

» Pros: very readable and natural definition, constructors are
explicit;

data N : Set where
zero : N
succ : N > N

» Pros: very readable and natural definition, constructors are
explicit;

» Cons: induction scheme lives outside of the type theory, can't
abstract over it.

W-types

First internal approximation: W-types® aka. containers?.

Martin-L6f, “Intuitionistic type theory”.
2Abbott, Altenkirch, and Ghani, “Categories of Containers”.

W-types

First internal approximation: W-types® aka. containers?.

Define the following primitive

data W (S : Set) (P : S > Set) : Set where
sup : (cons : S) > (Pcons>WSP)>WSP

Martin-L6f, “Intuitionistic type theory”.
2Abbott, Altenkirch, and Ghani, “Categories of Containers”.

W-types

First internal approximation: W-types® aka. containers?.

Define the following primitive

data W (S : Set) (P : S > Set) : Set where
sup : (cons : S) > (Pcons>WSP)>WSP

S is the type of shapes while P is the type of positions, ie. arities
of the recursive references of the constructors.

Martin-L6f, “Intuitionistic type theory”.
2Abbott, Altenkirch, and Ghani, “Categories of Containers”.

NShapes : Set
NShapes = Bool

NPositions : NShapes > Set
NPositions (inl tt) = L -- zero constructor
NPositions (inr tt) = T -- succ constructor

N = W NShapes NPositions

» Pros: Historic approach, role is well-understood;

» Pros: Historic approach, role is well-understood;

» Cons: Not very intuitive, doesn't have great internal features.

» Pros: Historic approach, role is well-understood;

» Cons: Not very intuitive, doesn't have great internal features.

List : Set > Set
List A = W ListShapes ListPositions
where ListShapes : Set
ListShapes = T U A

ListPositions : ListShapes > Set
ListPositions (inl _) = 1
ListPositions (inr _) =T

We have one shape per element of Al

def-naturals : (n : N)
> (n = zero)
¥ (L me N1 (n = (succ m)))

def-naturals : (n : N)
> (n = zero)
¥ (L me N1 (n = (succ m)))

def-naturals (sup (inl tt) Ff) = {1}
— need to show f = (A ())
def-naturals (sup (inr tt) g) = {!!'}

-- need to show g = (A tt > g tt)

def-naturals : (n : N)
> (n = zero)
¥ (L me N1 (n = (succ m)))

def-naturals (sup (inl tt) Ff) = {1}
— need to show f = (A ())
def-naturals (sup (inr tt) g) = {!!'}

-- need to show g = (A tt > g tt)

fUunExt needed!

Fixed points

Can we take inspiration from the categorical semantics? Initial
algebras of endofunctors are the least fixed points of type formers.

Fixed points

Can we take inspiration from the categorical semantics? Initial
algebras of endofunctors are the least fixed points of type formers.

N-type-former : Set > Set
N-type-former X = T U X

How do we take least fixed points of type formers?

M : (Set > Set) »> Set
pF= {!}

How do we take least fixed points of type formers?

M : (Set > Set) »> Set
pF= {!}

Not all type formers have fixed points!

oops-type-former : Set > Set
oops-type-former X = X > 1L

Proof assistants already use a syntactic criterion: strict positivity.

data I : Set where
ok : (L>I)>I>1

not-ok : {! ((I » 1) >1)>11}

However, we have no way of saying inside the type system that a
type former is strictly positive, so we still can’t type .

Let's just extend the type system then!

id : @+ Set > Set

id X = X

not-positive : @+ Set > Set
not-positive X = {! X > 1 !}

New modal type theory, inspired by Abel, "Polarized Subtyping for
Sized Types" and following the framework of Gratzer et al.,
“Multimodal Dependent Type Theory".

unused most restrictive

.
\

mixed least restrictive

spositive : @+ Set > Set
spositive A = 1L > A

negative : @- Set > Set
negative A = A > L
Modalities compose!

f . @+ Set > Set
f A = negative (spositive (negative A))

spositive : @+ Set > Set
spositive A = 1L > A

negative : @- Set > Set

negative A = A > L

Modalities compose!

f . @+ Set > Set

f A = negative (spositive (negative A))
Very importantly

pi : (@- A : Set) > (@+ B : Set) > Set
pi AB=A>B8

After fiddling with the positivity checker, we can write down:

After fiddling with the positivity checker, we can write down:

data p (@++ F : @+ Set > Set) : Set where
fix : F (W F) > uF

Back to our running examples:

N : Set
N=pg (AX>TU X)

Back to our running examples:

N : Set
N=pg (AX>TU X)

List : @+ Set > Set
List A=p (AX>TUWU A x X)

Back to our running examples:

N : Set
N=pg (AX>TU X)

List : @+ Set > Set
List A=p (AX>TUWU A x X)

W: (A : Set) (B : A > Set)
> @+ Set > Set

WABX =
sSfaeA] (Ba»>X)

pattern zero = fix (inl tt)
pattern succ n = fix (inr n)

pattern nil = fix (inl tt)
pattern cons a b = fix (inr (a , b))

length : {A : Set}
> List A
> N
length nil = zero
length (cons _ b) = succ (length b)

Further work

Subtyping

id : (@+ Set > Set) > (Set > Set)
id F = {!F!}

Need to eta-expand!

Reduces composability.

Generic fmap

fmap : (F : @+ Set > Set) {A B : Set}
> (f : A>B)
> (FA>FB)

fmap f fa = {!1}

Sound familiar?

Generic fmap

fmap : (F : @+ Set > Set) {A B : Set}
> (f : A>B)
> (FA>FB)

fmap f fa = {!1}

Sound familiar?

equivmap : (F : Type > Type) {A B : Type}
> (eq : A =~ B)
> FA=~FB
equivmap F eq = pathToEquiv (cong F (ua eq))

{-# TERMINATING #-}
pelim : (F : @+ Set > Set) {A : Set}
> (alg : F A > A)
> (W F>A)
pelim F alg (fix x) = alg (fmap F (pelim F alg) x)

— Internalize some generic programming.

Directed Type Theory

data Hom[_,_] {A : Set &}
:@- A> @+ A> Set ¢
where
id : V {@unused x} > Hom[x , x]

Directed Type Theory

data Hom[_,_]1 {A : Set &€}
:@- A> @+ A> Set ¢
where
id : V {@unused x} > Hom[x , x]

elim : {A : Set &}
(F:Q@ A>@+A>Sete")
> ((@unused x : A) > F x x)
> (@unused x y : A)
> (Hom[x , y 1> F xy)
elim F F-id x .x id = F-id x

fmap : {A B : Set ¢}

> (F : @+ Set & > Set 2')

> Hom[A, B] > Hom[FA, FB]
fmap F id = id

fmap : {A B : Set ¢}

> (F : @+ Set & > Set 2')

> Hom[A, B] > Hom[FA, FB]
fmap F id = id

HomToFun : {A B : Set €}
> Hom[A, B]>A>8B
HomToFun {A = A} {B = B} =
elim (A X Y > X>Y) (ANX x>x) AB

fmap : {A B : Set ¢}

> (F : @+ Set & > Set 2')

> Hom[A, B] > Hom[FA, FB]
fmap F id = id

HomToFun : {A B : Set €}
> Hom[A, B]>A>8B
HomToFun {A = A} {B = B} =
elim (A X Y > X>Y) (ANX x>x) AB

postulate va : {A B : Set €}
> (A > B) > Hom[A, B]

Replacing positivity checks entirely

Remove syntactic positivity check and replace with type checking.

Replacing positivity checks entirely

Remove syntactic positivity check and replace with type checking.

Add [as a primitive and make data declarations desugar into a use
of it.

Replacing positivity checks entirely

Remove syntactic positivity check and replace with type checking.

Add [as a primitive and make data declarations desugar into a use
of it.

But we still don't know exactly how it interacts with funky
inductive types like inductive-inductive or inductive-recursive ones!

Annotation inferrer

Recontextualize positivity checking as an annotation elaboration
algorithm.

— Flexibility of type annotations + comfort of automation.

Semantics

» We're now in directed type theory, so we need a directed
model like in North, “Towards a Directed Homotopy Type
Theory™.

Semantics

» We're now in directed type theory, so we need a directed
model like in North, “Towards a Directed Homotopy Type
Theory™.

» Some types have a fix-point operator while most don't.
Maybe they should belong to their own mode.

Semantics

» We're now in directed type theory, so we need a directed
model like in North, “Towards a Directed Homotopy Type
Theory™.

» Some types have a fix-point operator while most don't.
Maybe they should belong to their own mode.

Fix-point mode: categorical analogue of dcpos, < x-locally
presentable categories with < x-accessible functors between them.

Complication: The rank of accessibility of —4 depends on the
cardinality of A.

Semantics

» We're now in directed type theory, so we need a directed
model like in North, “Towards a Directed Homotopy Type
Theory™.

» Some types have a fix-point operator while most don't.
Maybe they should belong to their own mode.

Fix-point mode: categorical analogue of dcpos, < x-locally
presentable categories with < x-accessible functors between them.

Complication: The rank of accessibility of —4 depends on the
cardinality of A.

No clear semantics for the so-called lock operator on contexts in
MTT for our modalities.

Takeaway

A prototype Agda implementation at
https://github.com/agda/agda/pull/6385. Some

work already merged!

https://github.com/agda/agda/pull/6385

Takeaway

A prototype Agda implementation at
https://github.com/agda/agda/pull/6385. Some

work already merged!

» Internalize induction schemes synthetically;

https://github.com/agda/agda/pull/6385

Takeaway

A prototype Agda implementation at
https://github.com/agda/agda/pull/6385. Some

work already merged!
» Internalize induction schemes synthetically;

» Use type-checking instead of syntactical checks for inductive
types;

https://github.com/agda/agda/pull/6385

Takeaway

A prototype Agda implementation at
https://github.com/agda/agda/pull/6385. Some

work already merged!
» Internalize induction schemes synthetically;

» Use type-checking instead of syntactical checks for inductive
types;

» Real-world use of directed type theory for programmers!

https://github.com/agda/agda/pull/6385

Abbott, Michael, Thorsten Altenkirch, and Neil Ghani.
“Categories of Containers”. In: Foundations of Software Science
and Computation Structures. Ed. by Andrew D. Gordon. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 23—-38. 1SBN:
978-3-540-36576-1.

Abel, Andreas. “Polarized Subtyping for Sized Types". In:
Computer Science — Theory and Applications. Ed. by

Dima Grigoriev, John Harrison, and Edward A. Hirsch. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 381-392.
ISBN: 978-3-540-34168-0.

Gratzer, Daniel et al. “Multimodal Dependent Type Theory".
In: Logical Methods in Computer Science Volume 17, Issue 3
(July 2021). 18SN: 1860-5974. DOTI:
10.46298/1mcs-17(3:11)2021. urL: http:
//dx.doi.org/10.46298/1mcs-17(3:11)2021.
Martin-Lof, Per. "Intuitionistic type theory”. In: Studies in
proof theory. 1984.

North, Paige Randall. “Towards a Directed Homotopy Type
Theory”. In: Proceedings of the Thirty-Fifth Conference on the
Mathematical Foundations of Programming Semantics. MFPS

https://doi.org/10.46298/lmcs-17(3:11)2021
http://dx.doi.org/10.46298/lmcs-17(3:11)2021
http://dx.doi.org/10.46298/lmcs-17(3:11)2021
https://doi.org/10.1016/j.entcs.2019.09.012
https://doi.org/10.1016/j.entcs.2019.09.012

Thank you!
Any questions? Suggestions?

	Further work
	References

