
Read the mode and stay positive
Towards internal positivity annotations

Malin Altenmüller1 Joris Ceulemans2 Lucas Escot3

Andreas Nuyts2 Josselin Poiret4

1University of Strathclyde, Scotland

2imec-DistriNet, KU Leuven, Belgium

3TU Delft, Netherlands

4ENS de Lyon, France

June 15, 2023

data ℕ : Set where

zero : ℕ

succ : ℕ → ℕ

▶ Pros: very readable and natural definition, constructors are
explicit;

▶ Cons: induction scheme lives outside of the type theory, can’t
abstract over it.

data ℕ : Set where

zero : ℕ

succ : ℕ → ℕ

▶ Pros: very readable and natural definition, constructors are
explicit;

▶ Cons: induction scheme lives outside of the type theory, can’t
abstract over it.

data ℕ : Set where

zero : ℕ

succ : ℕ → ℕ

▶ Pros: very readable and natural definition, constructors are
explicit;

▶ Cons: induction scheme lives outside of the type theory, can’t
abstract over it.

W-types

First internal approximation: W-types1 aka. containers2.

Define the following primitive

data W (S : Set) (P : S → Set) : Set where

sup : (cons : S) → (P cons → W S P) → W S P

S is the type of shapes while P is the type of positions, ie. arities
of the recursive references of the constructors.

1Martin-Löf, “Intuitionistic type theory”.
2Abbott, Altenkirch, and Ghani, “Categories of Containers”.

W-types

First internal approximation: W-types1 aka. containers2.

Define the following primitive

data W (S : Set) (P : S → Set) : Set where

sup : (cons : S) → (P cons → W S P) → W S P

S is the type of shapes while P is the type of positions, ie. arities
of the recursive references of the constructors.

1Martin-Löf, “Intuitionistic type theory”.
2Abbott, Altenkirch, and Ghani, “Categories of Containers”.

W-types

First internal approximation: W-types1 aka. containers2.

Define the following primitive

data W (S : Set) (P : S → Set) : Set where

sup : (cons : S) → (P cons → W S P) → W S P

S is the type of shapes while P is the type of positions, ie. arities
of the recursive references of the constructors.

1Martin-Löf, “Intuitionistic type theory”.
2Abbott, Altenkirch, and Ghani, “Categories of Containers”.

ℕShapes : Set

ℕShapes = Bool

ℕPositions : ℕShapes → Set

ℕPositions (inl tt) = ⊥ ^-- zero constructor

ℕPositions (inr tt) = ⊤ ^-- succ constructor

ℕ = W ℕShapes ℕPositions

▶ Pros: Historic approach, role is well-understood;

▶ Cons: Not very intuitive, doesn’t have great internal features.

List : Set → Set

List A = W ListShapes ListPositions

where ListShapes : Set

ListShapes = ⊤ ⊎ A

ListPositions : ListShapes → Set

ListPositions (inl _) = ⊥

ListPositions (inr _) = ⊤

We have one shape per element of A!

▶ Pros: Historic approach, role is well-understood;

▶ Cons: Not very intuitive, doesn’t have great internal features.

List : Set → Set

List A = W ListShapes ListPositions

where ListShapes : Set

ListShapes = ⊤ ⊎ A

ListPositions : ListShapes → Set

ListPositions (inl _) = ⊥

ListPositions (inr _) = ⊤

We have one shape per element of A!

▶ Pros: Historic approach, role is well-understood;

▶ Cons: Not very intuitive, doesn’t have great internal features.

List : Set → Set

List A = W ListShapes ListPositions

where ListShapes : Set

ListShapes = ⊤ ⊎ A

ListPositions : ListShapes → Set

ListPositions (inl _) = ⊥

ListPositions (inr _) = ⊤

We have one shape per element of A!

def-naturals : (n : ℕ)

→ (n ≡ zero)

⊎ (Σ[m ∈ ℕ] (n ≡ (succ m)))

def-naturals (sup (inl tt) f) = {^!!}

^-- need to show f ≡ (λ ())

def-naturals (sup (inr tt) g) = {^!!}

^-- need to show g ≡ (λ tt → g tt)

funExt needed!

def-naturals : (n : ℕ)

→ (n ≡ zero)

⊎ (Σ[m ∈ ℕ] (n ≡ (succ m)))

def-naturals (sup (inl tt) f) = {^!!}

^-- need to show f ≡ (λ ())

def-naturals (sup (inr tt) g) = {^!!}

^-- need to show g ≡ (λ tt → g tt)

funExt needed!

def-naturals : (n : ℕ)

→ (n ≡ zero)

⊎ (Σ[m ∈ ℕ] (n ≡ (succ m)))

def-naturals (sup (inl tt) f) = {^!!}

^-- need to show f ≡ (λ ())

def-naturals (sup (inr tt) g) = {^!!}

^-- need to show g ≡ (λ tt → g tt)

funExt needed!

Fixed points

Can we take inspiration from the categorical semantics? Initial
algebras of endofunctors are the least fixed points of type formers.

ℕ-type-former : Set → Set

ℕ-type-former X = ⊤ ⊎ X

Fixed points

Can we take inspiration from the categorical semantics? Initial
algebras of endofunctors are the least fixed points of type formers.

ℕ-type-former : Set → Set

ℕ-type-former X = ⊤ ⊎ X

How do we take least fixed points of type formers?

μ : (Set → Set) → Set

μ F = {^!!}

Not all type formers have fixed points!

oops-type-former : Set → Set

oops-type-former X = X → ⊥

How do we take least fixed points of type formers?

μ : (Set → Set) → Set

μ F = {^!!}

Not all type formers have fixed points!

oops-type-former : Set → Set

oops-type-former X = X → ⊥

Proof assistants already use a syntactic criterion: strict positivity.

data I : Set where

ok : (⊥ → I) → I → I

not-ok : {! ((I → ⊥) → ⊥) → I !}

However, we have no way of saying inside the type system that a
type former is strictly positive, so we still can’t type μ.

Let’s just extend the type system then!

id : @^++ Set → Set

id X = X

not-positive : @^++ Set → Set

not-positive X = {! X → ⊥ !}

New modal type theory, inspired by Abel, “Polarized Subtyping for
Sized Types” and following the framework of Gratzer et al.,
“Multimodal Dependent Type Theory”.

mixed

unused

-

+

^++

least restrictive

most restrictive

spositive : @^++ Set → Set

spositive A = ⊥ → A

negative : @- Set → Set

negative A = A → ⊥

Modalities compose!

f : @+ Set → Set

f A = negative (spositive (negative A))

Very importantly

pi : (@- A : Set) → (@^++ B : Set) → Set

pi A B = A → B

spositive : @^++ Set → Set

spositive A = ⊥ → A

negative : @- Set → Set

negative A = A → ⊥

Modalities compose!

f : @+ Set → Set

f A = negative (spositive (negative A))

Very importantly

pi : (@- A : Set) → (@^++ B : Set) → Set

pi A B = A → B

After fiddling with the positivity checker, we can write down:

data μ (@^++ F : @^++ Set → Set) : Set where

fix : F (μ F) → μ F

After fiddling with the positivity checker, we can write down:

data μ (@^++ F : @^++ Set → Set) : Set where

fix : F (μ F) → μ F

Back to our running examples:

ℕ : Set

ℕ = μ (λ X → ⊤ ⊎ X)

List : @^++ Set → Set

List A = μ (λ X → ⊤ ⊎ A × X)

W : (A : Set) (B : A → Set)

→ @^++ Set → Set

W A B X =

Σ[a ∈ A] (B a → X)

Back to our running examples:

ℕ : Set

ℕ = μ (λ X → ⊤ ⊎ X)

List : @^++ Set → Set

List A = μ (λ X → ⊤ ⊎ A × X)

W : (A : Set) (B : A → Set)

→ @^++ Set → Set

W A B X =

Σ[a ∈ A] (B a → X)

Back to our running examples:

ℕ : Set

ℕ = μ (λ X → ⊤ ⊎ X)

List : @^++ Set → Set

List A = μ (λ X → ⊤ ⊎ A × X)

W : (A : Set) (B : A → Set)

→ @^++ Set → Set

W A B X =

Σ[a ∈ A] (B a → X)

pattern zero = fix (inl tt)

pattern succ n = fix (inr n)

pattern nil = fix (inl tt)

pattern cons a b = fix (inr (a , b))

length : {A : Set}

→ List A

→ ℕ

length nil = zero

length (cons _ b) = succ (length b)

Further work

Subtyping

id : (@^++ Set → Set) → (Set → Set)

id F = {!F!}

Need to eta-expand!

Reduces composability.

Generic fmap

fmap : (F : @+ Set → Set) {A B : Set}

→ (f : A → B)

→ (F A → F B)

fmap f fa = {^!!}

Sound familiar?

equivmap : (F : Type → Type) {A B : Type}

→ (eq : A ≃ B)

→ F A ≃ F B

equivmap F eq = pathToEquiv (cong F (ua eq))

Generic fmap

fmap : (F : @+ Set → Set) {A B : Set}

→ (f : A → B)

→ (F A → F B)

fmap f fa = {^!!}

Sound familiar?

equivmap : (F : Type → Type) {A B : Type}

→ (eq : A ≃ B)

→ F A ≃ F B

equivmap F eq = pathToEquiv (cong F (ua eq))

{-# TERMINATING #-}

μelim : (F : @^++ Set → Set) {A : Set}

→ (alg : F A → A)

→ (μ F → A)

μelim F alg (fix x) = alg (fmap F (μelim F alg) x)

→ Internalize some generic programming.

Directed Type Theory

data Hom[_,_] {A : Set ℓ}

: @- A → @+ A → Set ℓ

where

id : ∀ {@unused x} → Hom[x , x]

elim : {A : Set ℓ}

(F : @- A → @+ A → Set ℓ')

→ ((@unused x : A) → F x x)

→ (@unused x y : A)

→ (Hom[x , y] → F x y)

elim F F-id x .x id = F-id x

Directed Type Theory

data Hom[_,_] {A : Set ℓ}

: @- A → @+ A → Set ℓ

where

id : ∀ {@unused x} → Hom[x , x]

elim : {A : Set ℓ}

(F : @- A → @+ A → Set ℓ')

→ ((@unused x : A) → F x x)

→ (@unused x y : A)

→ (Hom[x , y] → F x y)

elim F F-id x .x id = F-id x

fmap : {A B : Set ℓ}

→ (F : @+ Set ℓ → Set ℓ')

→ Hom[A , B] → Hom[F A , F B]

fmap F id = id

HomToFun : {A B : Set ℓ}

→ Hom[A , B] → A → B

HomToFun {A = A} {B = B} =

elim (λ X Y → X → Y) (λ X x → x) A B

postulate ua : {A B : Set ℓ}

→ (A → B) → Hom[A , B]

fmap : {A B : Set ℓ}

→ (F : @+ Set ℓ → Set ℓ')

→ Hom[A , B] → Hom[F A , F B]

fmap F id = id

HomToFun : {A B : Set ℓ}

→ Hom[A , B] → A → B

HomToFun {A = A} {B = B} =

elim (λ X Y → X → Y) (λ X x → x) A B

postulate ua : {A B : Set ℓ}

→ (A → B) → Hom[A , B]

fmap : {A B : Set ℓ}

→ (F : @+ Set ℓ → Set ℓ')

→ Hom[A , B] → Hom[F A , F B]

fmap F id = id

HomToFun : {A B : Set ℓ}

→ Hom[A , B] → A → B

HomToFun {A = A} {B = B} =

elim (λ X Y → X → Y) (λ X x → x) A B

postulate ua : {A B : Set ℓ}

→ (A → B) → Hom[A , B]

Replacing positivity checks entirely

Remove syntactic positivity check and replace with type checking.

Add μ as a primitive and make data declarations desugar into a use
of it.

But we still don’t know exactly how it interacts with funky
inductive types like inductive-inductive or inductive-recursive ones!

Replacing positivity checks entirely

Remove syntactic positivity check and replace with type checking.

Add μ as a primitive and make data declarations desugar into a use
of it.

But we still don’t know exactly how it interacts with funky
inductive types like inductive-inductive or inductive-recursive ones!

Replacing positivity checks entirely

Remove syntactic positivity check and replace with type checking.

Add μ as a primitive and make data declarations desugar into a use
of it.

But we still don’t know exactly how it interacts with funky
inductive types like inductive-inductive or inductive-recursive ones!

Annotation inferrer

Recontextualize positivity checking as an annotation elaboration
algorithm.

→ Flexibility of type annotations + comfort of automation.

Semantics

▶ We’re now in directed type theory, so we need a directed
model like in North, “Towards a Directed Homotopy Type
Theory”.

▶ Some types have a fix-point operator while most don’t.
Maybe they should belong to their own mode.

Fix-point mode: categorical analogue of dcpos, < 𝜅-locally
presentable categories with < 𝜅-accessible functors between them.

Complication: The rank of accessibility of −𝐴 depends on the
cardinality of 𝐴.

No clear semantics for the so-called lock operator on contexts in
MTT for our modalities.

Semantics

▶ We’re now in directed type theory, so we need a directed
model like in North, “Towards a Directed Homotopy Type
Theory”.

▶ Some types have a fix-point operator while most don’t.
Maybe they should belong to their own mode.

Fix-point mode: categorical analogue of dcpos, < 𝜅-locally
presentable categories with < 𝜅-accessible functors between them.

Complication: The rank of accessibility of −𝐴 depends on the
cardinality of 𝐴.

No clear semantics for the so-called lock operator on contexts in
MTT for our modalities.

Semantics

▶ We’re now in directed type theory, so we need a directed
model like in North, “Towards a Directed Homotopy Type
Theory”.

▶ Some types have a fix-point operator while most don’t.
Maybe they should belong to their own mode.

Fix-point mode: categorical analogue of dcpos, < 𝜅-locally
presentable categories with < 𝜅-accessible functors between them.

Complication: The rank of accessibility of −𝐴 depends on the
cardinality of 𝐴.

No clear semantics for the so-called lock operator on contexts in
MTT for our modalities.

Semantics

▶ We’re now in directed type theory, so we need a directed
model like in North, “Towards a Directed Homotopy Type
Theory”.

▶ Some types have a fix-point operator while most don’t.
Maybe they should belong to their own mode.

Fix-point mode: categorical analogue of dcpos, < 𝜅-locally
presentable categories with < 𝜅-accessible functors between them.

Complication: The rank of accessibility of −𝐴 depends on the
cardinality of 𝐴.

No clear semantics for the so-called lock operator on contexts in
MTT for our modalities.

Takeaway

A prototype Agda implementation at
https://github.com/agda/agda/pull/6385. Some
work already merged!

▶ Internalize induction schemes synthetically;

▶ Use type-checking instead of syntactical checks for inductive
types;

▶ Real-world use of directed type theory for programmers!

https://github.com/agda/agda/pull/6385

Takeaway

A prototype Agda implementation at
https://github.com/agda/agda/pull/6385. Some
work already merged!

▶ Internalize induction schemes synthetically;

▶ Use type-checking instead of syntactical checks for inductive
types;

▶ Real-world use of directed type theory for programmers!

https://github.com/agda/agda/pull/6385

Takeaway

A prototype Agda implementation at
https://github.com/agda/agda/pull/6385. Some
work already merged!

▶ Internalize induction schemes synthetically;

▶ Use type-checking instead of syntactical checks for inductive
types;

▶ Real-world use of directed type theory for programmers!

https://github.com/agda/agda/pull/6385

Takeaway

A prototype Agda implementation at
https://github.com/agda/agda/pull/6385. Some
work already merged!

▶ Internalize induction schemes synthetically;

▶ Use type-checking instead of syntactical checks for inductive
types;

▶ Real-world use of directed type theory for programmers!

https://github.com/agda/agda/pull/6385

Abbott, Michael, Thorsten Altenkirch, and Neil Ghani.
“Categories of Containers”. In: Foundations of Software Science
and Computation Structures. Ed. by Andrew D. Gordon. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 23–38. isbn:
978-3-540-36576-1.
Abel, Andreas. “Polarized Subtyping for Sized Types”. In:
Computer Science – Theory and Applications. Ed. by
Dima Grigoriev, John Harrison, and Edward A. Hirsch. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 381–392.
isbn: 978-3-540-34168-0.
Gratzer, Daniel et al. “Multimodal Dependent Type Theory”.
In: Logical Methods in Computer Science Volume 17, Issue 3
(July 2021). issn: 1860-5974. doi:
10.46298/lmcs-17(3:11)2021. url: http:
//dx.doi.org/10.46298/lmcs-17(3:11)2021.
Martin-Löf, Per. “Intuitionistic type theory”. In: Studies in
proof theory. 1984.
North, Paige Randall. “Towards a Directed Homotopy Type
Theory”. In: Proceedings of the Thirty-Fifth Conference on the
Mathematical Foundations of Programming Semantics, MFPS
2019, London, UK, June 4-7, 2019. Ed. by Barbara König.
Vol. 347. Electronic Notes in Theoretical Computer Science.
Elsevier, 2019, pp. 223–239. doi:
10.1016/j.entcs.2019.09.012. url:
https://doi.org/10.1016/j.entcs.2019.09.012.

https://doi.org/10.46298/lmcs-17(3:11)2021
http://dx.doi.org/10.46298/lmcs-17(3:11)2021
http://dx.doi.org/10.46298/lmcs-17(3:11)2021
https://doi.org/10.1016/j.entcs.2019.09.012
https://doi.org/10.1016/j.entcs.2019.09.012

Thank you!
Any questions? Suggestions?

	Further work
	References

