Read the mode and stay positive

Towards internal positivity annotations
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» Pros: very readable and natural definition, constructors are
explicit;

» Cons: induction scheme lives outside of the type theory, can't
abstract over it.
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W-types

First internal approximation: W-types® aka. containers?.

Define the following primitive

data W (S : Set) (P : S > Set) : Set where
sup : (cons : S) > (Pcons>WSP)>WSP

S is the type of shapes while P is the type of positions, ie. arities
of the recursive references of the constructors.

Martin-L6f, “Intuitionistic type theory”.
2Abbott, Altenkirch, and Ghani, “Categories of Containers”.



NShapes : Set
NShapes = Bool

NPositions : NShapes > Set
NPositions (inl tt) = L -- zero constructor
NPositions (inr tt) = T -- succ constructor

N = W NShapes NPositions



» Pros: Historic approach, role is well-understood;



» Pros: Historic approach, role is well-understood;

» Cons: Not very intuitive, doesn't have great internal features.



» Pros: Historic approach, role is well-understood;

» Cons: Not very intuitive, doesn't have great internal features.

List : Set > Set
List A = W ListShapes ListPositions
where ListShapes : Set
ListShapes = T U A

ListPositions : ListShapes > Set
ListPositions (inl _) = 1
ListPositions (inr _) =T

We have one shape per element of Al



def-naturals : (n : N)
> (n = zero)
¥ (L me N1 (n = (succ m)))



def-naturals : (n : N)
> (n = zero)
¥ (L me N1 (n = (succ m)))

def-naturals (sup (inl tt) Ff) = {1}
— need to show f = (A ())
def-naturals (sup (inr tt) g) = {!!'}

-- need to show g = (A tt > g tt)



def-naturals : (n : N)
> (n = zero)
¥ (L me N1 (n = (succ m)))

def-naturals (sup (inl tt) Ff) = {1}
— need to show f = (A ())
def-naturals (sup (inr tt) g) = {!!'}

-- need to show g = (A tt > g tt)

fUunExt needed!
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Can we take inspiration from the categorical semantics? Initial
algebras of endofunctors are the least fixed points of type formers.

N-type-former : Set > Set
N-type-former X = T U X



How do we take least fixed points of type formers?
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pF= {!}



How do we take least fixed points of type formers?

M : (Set > Set) »> Set
pF= {!}

Not all type formers have fixed points!

oops-type-former : Set > Set
oops-type-former X = X > 1L



Proof assistants already use a syntactic criterion: strict positivity.

data I : Set where
ok : (L>I)>I>1

not-ok : {! ((I » 1) >1)>11}

However, we have no way of saying inside the type system that a
type former is strictly positive, so we still can’t type .



Let's just extend the type system then!

id : @+ Set > Set

id X = X

not-positive : @+ Set > Set
not-positive X = {! X > 1 !}

New modal type theory, inspired by Abel, "Polarized Subtyping for
Sized Types" and following the framework of Gratzer et al.,
“Multimodal Dependent Type Theory".



unused most restrictive

.
\

mixed least restrictive



spositive : @+ Set > Set
spositive A = 1L > A

negative : @- Set > Set
negative A = A > L
Modalities compose!

f . @+ Set > Set
f A = negative (spositive (negative A))



spositive : @+ Set > Set
spositive A = 1L > A

negative : @- Set > Set

negative A = A > L

Modalities compose!

f . @+ Set > Set

f A = negative (spositive (negative A))
Very importantly

pi : (@- A : Set) > (@+ B : Set) > Set
pi AB=A>B8



After fiddling with the positivity checker, we can write down:



After fiddling with the positivity checker, we can write down:

data p (@++ F : @+ Set > Set) : Set where
fix : F (W F) > uF
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Back to our running examples:

N : Set
N=pg (AX>TU X)

List : @+ Set > Set
List A=p (AX>TUWU A x X)

W: (A : Set) (B : A > Set)
> @+ Set > Set

WABX =
sSfaeA] (Ba»>X)



pattern zero = fix (inl tt)
pattern succ n = fix (inr n)

pattern nil = fix (inl tt)
pattern cons a b = fix (inr (a , b))

length : {A : Set}
> List A
> N
length nil = zero
length (cons _ b) = succ (length b)



Further work



Subtyping

id : (@+ Set > Set) > (Set > Set)
id F = {!F!}

Need to eta-expand!

Reduces composability.



Generic fmap

fmap : (F : @+ Set > Set) {A B : Set}
> (f : A>B)
> (FA>FB)

fmap f fa = {!1}

Sound familiar?



Generic fmap

fmap : (F : @+ Set > Set) {A B : Set}
> (f : A>B)
> (FA>FB)

fmap f fa = {!1}

Sound familiar?

equivmap : (F : Type > Type) {A B : Type}
> (eq : A =~ B)
> FA=~FB
equivmap F eq = pathToEquiv (cong F (ua eq))



{-# TERMINATING #-}
pelim : (F : @+ Set > Set) {A : Set}
> (alg : F A > A)
> (W F>A)
pelim F alg (fix x) = alg (fmap F (pelim F alg) x)

— Internalize some generic programming.



Directed Type Theory
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where
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Directed Type Theory

data Hom[_,_]1 {A : Set &€}
:@- A> @+ A> Set ¢
where
id : V {@unused x} > Hom[ x , x ]

elim : {A : Set &}
(F:Q@ A>@+A>Sete")
> ((@unused x : A) > F x x)
> (@unused x y : A)
> (Hom[ x , y 1> F xy)
elim F F-id x .x id = F-id x
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elim (A X Y > X>Y) (ANX x>x) AB



fmap : {A B : Set ¢}

> (F : @+ Set & > Set 2')

> Hom[ A, B] > Hom[ FA, FB ]
fmap F id = id

HomToFun : {A B : Set €}
> Hom[ A, B]>A>8B
HomToFun {A = A} {B = B} =
elim (A X Y > X>Y) (ANX x>x) AB

postulate va : {A B : Set €}
> (A > B) > Hom[ A, B ]
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Replacing positivity checks entirely

Remove syntactic positivity check and replace with type checking.

Add [ as a primitive and make data declarations desugar into a use
of it.

But we still don't know exactly how it interacts with funky
inductive types like inductive-inductive or inductive-recursive ones!



Annotation inferrer

Recontextualize positivity checking as an annotation elaboration
algorithm.

— Flexibility of type annotations + comfort of automation.
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Semantics

» We're now in directed type theory, so we need a directed
model like in North, “Towards a Directed Homotopy Type
Theory™.

» Some types have a fix-point operator while most don't.
Maybe they should belong to their own mode.

Fix-point mode: categorical analogue of dcpos, < x-locally
presentable categories with < x-accessible functors between them.

Complication: The rank of accessibility of —4 depends on the
cardinality of A.

No clear semantics for the so-called lock operator on contexts in
MTT for our modalities.
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Takeaway

A prototype Agda implementation at
https://github.com/agda/agda/pull/6385. Some

work already merged!
» Internalize induction schemes synthetically;

» Use type-checking instead of syntactical checks for inductive
types;

» Real-world use of directed type theory for programmers!


https://github.com/agda/agda/pull/6385
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Thank you!
Any questions? Suggestions?
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