Design and Formalization of
Blockchain Oracles

Giselle Reis?, Bruno Woltzenlogel Paleo”* and Mohammad Shaheer?

! Carnegie Mellon University in Qatar
’Djed Alliance

Preliminaries

e Blockchain

o Adistributed database for computations.

e Smart Contracts

o Programs uploaded to the blockchain that can be executed by users through
transactions (function calls).

o Written in the blockchain language (e.g. Solidity), executed using the blockchain
virtual machine.

o Stateful.

Oracles

e Smart contracts can only interact with on-chain data.

e Need external data to be useful.

o E.g. transaction may depend on the value of a commodity or result of a game).
e Hence, oracles

o Framework for bringing external data onto the chain.

o Ensures consistency for all on-chain users (all access the same data).

o Needs to be trusted.

o Smart-contract (to be queried and store data)

Oracles - overview

Off-chain On-chain

Feeds data to Oracle's Smart
- Contract
(containing data)

users can fetch
(the same) data

Oracles - considerations

e Thereisno free lunch and there is no free oracle.
o Data may have a price
o Running functions on-chain has an associated cost (gas fee)
o Operational costs (machines, people, electricity, etc.)
e Current solutions:
o Ad-hoc, no agreed shared principles or guarantees
o Documentation inexistent or not detailed enough (white papers)

e Our solution: formalized and verified oracle protocol!

Step 1: define goals and protocol

Oracle - goals

e The oracle protocol should fulfil the following goals:
o G1: Sustainable: Oracle costs are covered by the fee charged.
o G2: Fairness:
a) Consumers should pay only once for the same data point.

b) Consumers should be charged proportionally to the benefit obtained.

Protocol

write data
for cost c

read
read for
price @ *w,

Oracle's Smart
Contract

read for
price @ * w,

Reads and writes are calls to the oracle's smart contract functions.

¢ is called the base fee

Oracle's smart contract stores C and sets ¢, w, and w,
Consumers pay with existing credit.

Satistying Goals

G2b. Consumers should be charged proportionally to the benefit obtained.

read

read for
price @ *w,
write data
forcostc | Oracle's Smart
- Contract
read for
price @ * w,

e Consumers' price is determined by their weight, stored in the oracle's contract.
e Ideally,w,>w,

e Currently not formally verified.

Satistying Goals

G2a. Consumers should pay only once for the same data point.

Time
P
. Data Read Data Read . Data Read
Data Write Consumer A Consumer A Data Write Consumer A o0

Cost = of

Cost = cj

Price=¢ *w, Price=0 Price = @' * w,

e Dependson the implementation of data read function.
o Function requirement, formally checked.
e Requires bookkeeping of the times of latest writes and reads per consumer.

10

Satisfying Goals

G1. Oracle costs are covered by the fee charged.

Time

Data Read Data Read

Data Read
Consumer A
Price=¢ *w,

Data Write Data Write

Consumer A
S
Price=¢'*w,

Consumer A
Price=0

Cost = of Cost = cj

Unpredictable!

Base fee @ is adjusted to cushion big profits or losses.

Depends on the implementation of the function that adjusts the base fee.
Requires bookkeeping of accumulated cost and revenue.

Formal verification is hard because of unpredicatbility...
o Proved that cost = revenue only under very strong assumptions.

11

Step 2: implement and prove

Formalization

e Oracle smart contract was implemented in Solidity (object oriented PL)
https://github.com/DjedAlliance/Oracle-Solidity/tree/cmu-gatar

e Oracle smart contract + state were implemented in Coq (inherently functional)
https://github.com/DjedAlliance/Oracle-FormalMethods

e Goals:

o Coqand Solidity code should be as close as possible (adequacy)

o Properties should be easy enough to prove (depends on representation)

13

https://github.com/DjedAlliance/Oracle-Solidity/tree/cmu-qatar
https://github.com/DjedAlliance/Oracle-FormalMethods

Formalization - Contracts as Records

Oracle is Multiownable {

string public description;

uint private data;
ing(address => uint) | credit;
t DataWwritten(uint , uint

1 writeData(uint , uint onlyOwner
writes += 1;

data = data;

totalCost += cost;

latestCost = cost;

time += 1;

latestWrite = time;

emit Datawritten(data, cost);

rd State :=

oraclesState : OracleState;
oracleParameters : OracleParameters;
trace : Trace

OracleParameters :=

description : string;

Oraclestate :=

data : float;
totalCredit : nat;

e Event : Type :=
| Datawritten (newData : float) (newCost : nat) (caller

write data (state : State) (...) :

Trace : pe := list (Event).

: address)

Formalization - Contracts as Records

Oracle is Multiownable {

string public description;

uint private data;
ing(address => uint) | credit;
t DataWwritten(uint , uint

1 writeData(uint , uint onlyOwner
writes += 1;

data = data;

totalCost += cost;

latestCost = cost;

time += 1;

latestWrite = time;

emit Datawritten(data, cost);

rd State :=

oraclesState : OracleState;
oracleParameters : OracleParameters;
trace : Trace

OracleParameters :=

description : string;

Oraclestate :=

data : float;
totalCredit : nat;

e Event : Type :=
| Datawritten (newData : float) (newCost : nat) (caller

write data (state : State) (...) :

Trace : pe := list (Event).

: address)

Formalization - Contracts as Records

Oracle is Multiownable {

string public description;

uint private data;
ing(address => uint) | credit;
t DataWwritten(uint , uint

1 writeData(uint , uint onlyOwner
writes += 1;

data = data;

totalCost += cost;

latestCost = cost;

time += 1;

latestWrite = time;

emit Datawritten(data, cost);

rd State :=

oraclesState : OracleState;
oracleParameters : OracleParameters;
trace : Trace

OracleParameters :=

description : string;

Oraclestate :=

data : float;
totalCredit : nat;

e Event : Type :=
| Datawritten (newData : float) (newCost : nat) (caller

write data (state : State) (...) :

Trace : pe := list (Event).

: address)

Formalization - Contracts as Records

Oracle is Multiownable {

string public description;

uint private data;
ing(address => uint)

t DataWwritten(uint
1 writeData(uint

writes += 1;

data = data;

totalCost += cost;

latestCost = cost;

time += 1;

latestWrite = time;

emit Datawritten(data, cost);

onlyOwner

rd State :=

oraclesState : OracleState;
oracleParameters : OracleParameters;
trace : Trace

OracleParameters :=

description : string;

Oraclestate :=

data : float;
totalCredit : nat;

e Event : Type :=
| Datawritten (newData : float) (newCost : nat) (caller

write data (state : State) (...) :

Trace : pe := list (Event).

: address)

Formalization - Contracts as Records

Oracle is Multiownable {

string public description;

uint private data;
ing(address => uint)

t DataWwritten(uint
1 writeData(uint

writes += 1;

data = data;

totalCost += cost;

latestCost = cost;

time += 1;

latestWrite = time;

emit Datawritten(data, cost);

onlyOwner |

rd State :=

oraclesState : OracleState;
oracleParameters : OracleParameters;
trace : Trace

OracleParameters :=

description : string;

Oraclestate :=

data : float;
totalCredit : nat;

e Event : Type :=
| Datawritten (newData : float) (newCost : nat) (caller

write data (state : State) (...) :

Trace : pe := list (Event).

: address)

Formalization - Contracts as Records

Oracle is Multiownable {

string public description;

uint private data;
ing(address => uint) private crodit;

t DataWwritten(uint uint
1 writeData(uint , uint

writes += 1;

data = data;

totalCost += cost;

latestCost = cost;

time += 1;

latestWrite = time;

emit Datawritten(data, cost);

onlyOwner |

rd State :=

oraclesState : OracleState;
oracleParameters : OracleParameters;
trace : Trace

OracleParameters :=

description : string;

Oraclestate :=

data : float;
totalCredit : nat;

e Event : Type :=
| Datawritten (newData : float) (newCost : nat) (caller

write data (state : State) (...) :

Trace : pe := list (Event).

: address)

Formalization - Contracts as Records

Oracle is Multiownable {

string public description;

uint private data;
ing(address => uint) | wadit;

t DataWwritten(uint uint 05

1 writeData(uint , uint
writes += 1;

data = data;

totalCost += cost;

latestCost = cost;

time += 1;

latestWrite = time;

emit Datawritten(data, cost);

) external onlyOwner H

rd State :=

oraclesState
oracleParameters
trace

: OracleState;

: OracleParameters;

: Trace
OracleParameters :=

description : string;

OracleState :=

data
totalCredit

: float;
: nat;

o Event : Type :=

| Datawritten (newData : float) (newCost

write data (state : State) (...) :

Trace : := list (Event).

: nat) (caller :

address)

Formalization - Functions as Definitions

writeData(uint , uint

writes += 1;
data = data;
totalCost += cost;

latestCost = cost;

time += 1;

latestWrite = time;
DataWritten(data, cost);

| onlyOwner

n write_data (state : State)
(newData : float)
(newCost : nat)

(caller : address) : State
state. (oracleState)
state. (oracleParameters) ir
let oldTrace := state.(trace)

>t oldOracleState :
let oldoracleParams :=

if compare_address oldOracleParams.(owner) caller

then
let newOracleState

:= Build OracleState

(oldoraclesState. (writes) + 1)

newData

(oldoraclestate. (totalCost) + newCost)
newCost

(oldoraclestate. (time) + 1)
(oldoraclestate. (time) + 1)

let newEvent := DataWritten newData newCost caller

Build State newOracleState oldOracleParams (oldTrace ++ (newEvent ::

else
state.

21

Formalization - Functions as Definitions

n write_data (state : State)
(newData : float)
(newCost : nat)
(caller : address) : State :=
>t oldOracleState := state.(oracleState)
let oldoracleParams := state.(oracleParameters) ir
let oldTrace := state.(trace)

writeData(uint , uint) |external onlyOwner

writes += 1; if compare_address oldOracleParams. (owner) caller

data = data;

totalCost += cost;

latestCost = cost;

time += 1;

latestWrite = time;
DataWritten(data, cost);

then

let newOracleState

:= Build OracleState

(oldoraclesState. (writes) + 1)

newData

(oldoraclestate. (totalCost) + newCost)
newCost

(oldoraclestate. (time) + 1)
(oldoraclestate. (time) + 1)

let newEvent := DataWritten newData newCost caller

Build State newOracleState oldOracleParams (oldTrace ++ (newEvent ::

else
state.

22

Formalization - Functions as Definitions

n write_data (state : State)
(newData : float)
(newCost : nat)
(caller : address) : State :=
>t oldOracleState := state.(oracleState)
let oldoracleParams := state.(oracleParameters) ir
let oldTrace := state.(trace)

writeData(uint , uint) |external onlyOwner

writes += 1; if compare_address oldOracleParams. (owner) caller

data = data;

totalCost += cost;

latestCost = cost;

time += 1;

latestWrite = time;
DataWritten(data, cost);

then

let newOracleState

:= Build OracleState

(oldoraclesState. (writes) + 1)

newData

(oldoraclestate. (totalCost) + newCost)
newCost

(oldoraclestate. (time) + 1)
(oldoraclestate. (time) + 1)

let newEvent := DataWritten newData newCost caller

Build State newOracleState oldOracleParams (oldTrace ++ (newEvent ::

else
state.

23

Formalization - Functions as Definitions

n write_data (state : State)
(newData : float)
(newCost : nat)
(caller : address) : State :=
>t oldOracleState := state.(oracleState)
) ” . let oldoracleParams := state.(oracleParameters) ir
writeData(uint , uint) |external onlyOwner let oldTrace := state.(trace)

writes += 1; if compare_address oldOracleParams. (owner) caller

+han
data = _data; let newOracleState := Build _OracleState

totalCost += cost; (oldoraclestate. (writes) + 1)

Data
latestCost = cost; ek
. 2 (oldoraclestate. (totalCost) + newCost)
time += 1; newCost
latestWrite = time; (oldoraclestate. (time) + 1)

DataWritten data, cost); (oldoraclestate. (time) + 1)

let newEvent := DataWritten newData newCost calier
Build State newOracleState oldOraclerarams (oldTrace ++ (newEvent ::
else
state.

24

Formalization - Functions as Definitions

writeData(uint , uint

writes += 1;

data = data;

totalCost += cost;

latestCost = cost;

time += 1;

latestWrite = time;
DataWritten(data, cost);

| onlyOwner

n write_data (state : State)

>t oldoracleState :
let oldoracleParams := state.(oracleParameters) ir
let oldTrace := state.(trace)

(newData : float)

(newCost : nat)

(caller : address) : State :=
state. (oracleState)

if compare_address oldOracleParams.(owner) caller

then

let newOracleState := Build OracleState

let newEvent
Build State
else
state.

(oldoraclesState. (writes) + 1)

newData

(oldoraclestate. (totalCost) + newCost)
newCost

(oldoraclestate. (time) + 1)
(oldoraclestate. (time) + 1)

i= DataWritten newData newCost caller
newOracleState oldOraclerarams (oldTrace ++ (newEvent ::

Returns the modified
Oracle State

25

Formalization - Traces

lve Event : Type :=
| DataWritten (newData : float) (newCost : nat) (caller : address)

| DataRead (consumer : address) (weight : nat) (data : float)

lon execute (state : State) (event : Event) : State :=

1 event wit

Separate event for
each contract
function.

Simulation

26

Theorems Proved

Theorem 1: Consumers' credits are always non-negative.

Theorem credit non negative : forall (event : Event) (state : State),

credit non negative all consumers (get consumers state) ->
credit non negative all consumers (get consumers (execute state event)).

e Sanity check.
e 2 helperlemmas

Theorems Proved

Theorem 2: Between any two consecutive ‘DataWrite’ events, every
consumer pays exactly once for obtaining data.

Fixpoint all consumers pay once slice (slice : list (State * Event)) : Prop :
match slice with
| nil => True
| (BuchiE, aVEe) {2 slilea? ==
match event with

Eixpointhallliconsumersipaytonce(splitltiis ti= st (s ti(State I Event)l)) N Propi:

Theorem all consumers pay once proof :

forall (state : State) (baseFee : nat),
all consumers pay once (split trace (get trace state)
(constructor (get owner state)
(get description state)
(get locking period state)
baseFee)

e Goal G2a.
e Requires reasoning on the trace: 9 helper lemmas, 9 fixpoint definitions.

28

Theorems Proved

Theorem 3: The implemented adjustment of the base fee ensures the cost is the same as the
revenue (or the base fee is at its max value) if:

e datawasread (there was revenue);

e the write cost remained constant;

e the estimated number of reads and writes was correct (predictability).

Theorem base fee adjusted single slice
forall (slice : list (State * Event)),
(reads more than zero (slice) /\ cost remains same (slice) /\

reads writes same (slice) /\ correct format slice (slice)) ->

total cost equals total revenue (slice) \/ new base fiee gt max fee (slice).

e Goal Gl.
e Proofin progress.
® Requires reasoning on the trace: 8 helper lemmas so far.

29

| essons Learned

30

| essons Learned

— ,,//

A lot of effort to come up with the right representation.

31

| essons Learned

—_~

—_~

A lot of effort to come up with the right representation.

Manually keeping the state is cumbersome
(also it relies on our understanding of the virtual machine).

32

| essons Learned

' Alot of effort to come up with the right representation.

) Manually keeping the state is cumbersome
(also it relies on our understanding of the virtual machine).

' Formally verifying even simple properties takes a lot of time.

33

| essons Learned

' Alot of effort to come up with the right representation.

) Manually keeping the state is cumbersome
(also it relies on our understanding of the virtual machine).

' Formally verifying even simple properties takes a lot of time.

£ Thinking about properties to be satisfied guides the protocol design.

34

| essons Learned

A lot of effort to come up with the right representation.

Manually keeping the state is cumbersome
(also it relies on our understanding of the virtual machine).

Formally verifying even simple properties takes a lot of time.

Thinking about properties to be satisfied guides the protocol design.

Implementation bugs were detected when developing proofs
(since we are forced to look at every case).

35

| essons Learned

A lot of effort to come up with the right representation.

Manually keeping the state is cumbersome
(also it relies on our understanding of the virtual machine).

Formally verifying even simple properties takes a lot of time.
Thinking about properties to be satisfied guides the protocol design.

Implementation bugs were detected when developing proofs
(since we are forced to look at every case).

Formalization has potential (smart contract auditing is a thing!) but with the
current state of the tools, it is hard to scale.

36

Thank you for your attention!
Questions?

