
Design and Formalization of
Blockchain Oracles

Giselle Reis1, Bruno Woltzenlogel Paleo2 and Mohammad Shaheer1

1

1 Carnegie Mellon University in Qatar
2 Djed Alliance

Preliminaries

● Blockchain

○ A distributed database for computations.

● Smart Contracts

○ Programs uploaded to the blockchain that can be executed by users through
transactions (function calls).

○ Written in the blockchain language (e.g. Solidity), executed using the blockchain
virtual machine.

○ Stateful.

2

Oracles

● Smart contracts can only interact with on-chain data.

● Need external data to be useful.

○ E.g. transaction may depend on the value of a commodity or result of a game).

● Hence, oracles

○ Framework for bringing external data onto the chain.

○ Ensures consistency for all on-chain users (all access the same data).

○ Needs to be trusted.

○ Smart-contract (to be queried and store data)

3

Oracles – overview

Feeds data to

Off-chain

Trusted entity
or

organization
or

data owners
or …

Oracle's Smart
Contract

(containing data)

4

On-chain

users can fetch
(the same) data

Smart
Contract

Smart
Contract

Smart
Contract

Oracles – considerations
● There is no free lunch and there is no free oracle.

○ Data may have a price

○ Running functions on-chain has an associated cost (gas fee)

○ Operational costs (machines, people, electricity, etc.)

● Current solutions:

○ Ad-hoc, no agreed shared principles or guarantees

○ Documentation inexistent or not detailed enough (white papers)

● Our solution: formalized and verified oracle protocol!

5

Step 1: define goals and protocol

6

Oracle – goals
● The oracle protocol should fulfil the following goals:

○ G1: Sustainable: Oracle costs are covered by the fee charged.

○ G2: Fairness:

a) Consumers should pay only once for the same data point.

b) Consumers should be charged proportionally to the benefit obtained.

7

Protocol

write data
for cost c

Consuming
Contract B

Smart
Contractread for

price φ * wA

Smart
Contract

Smart
Contract

read

read

read

8

Trusted entity
or

organization
or

data owners
or …

Oracle's Smart
Contract

Consuming
Contract A

● Reads and writes are calls to the oracle's smart contract functions.
● φ is called the base fee
● Oracle's smart contract stores C and sets φ, wA and wB
● Consumers pay with existing credit.

read for
price φ * wB

Satisfying Goals
G2b. Consumers should be charged proportionally to the benefit obtained.

9

● Consumers' price is determined by their weight, stored in the oracle's contract.
● Ideally, wA > wB
● Currently not formally verified.

write data
for cost c

Consuming
Contract B

Smart
Contractread for

price φ * wA
Smart
Contract

Smart
Contract

read

read

read

Trusted entity
or

organization
or

data owners
or …

Oracle's Smart
Contract

Consuming
Contract A

read for
price φ * wB

Satisfying Goals
G2a. Consumers should pay only once for the same data point.

10

● Depends on the implementation of data read function.
○ Function requirement, formally checked.

● Requires bookkeeping of the times of latest writes and reads per consumer.

Time

Data Write
Cost = ci

Data Read
Consumer A
Price = φ * wA

Data Read
Consumer A
Price = 0

Data Write
Cost = cj

Data Read
Consumer A
Price = φ' * wA

…

Satisfying Goals
G1. Oracle costs are covered by the fee charged.

11

● Unpredictable!
● Base fee φ is adjusted to cushion big profits or losses.
● Depends on the implementation of the function that adjusts the base fee.
● Requires bookkeeping of accumulated cost and revenue.
● Formal verification is hard because of unpredicatbility…

○ Proved that cost = revenue only under very strong assumptions.

Time

Data Write
Cost = ci

Data Read
Consumer A
Price = φ * wA

Data Read
Consumer A
Price = 0

Data Write
Cost = cj

Data Read
Consumer A
Price = φ' * wA

…

Step 2: implement and prove

12

Formalization
● Oracle smart contract was implemented in Solidity (object oriented PL)

https://github.com/DjedAlliance/Oracle-Solidity/tree/cmu-qatar

● Oracle smart contract + state were implemented in Coq (inherently functional)
https://github.com/DjedAlliance/Oracle-FormalMethods

● Goals:

○ Coq and Solidity code should be as close as possible (adequacy)

○ Properties should be easy enough to prove (depends on representation)

13

https://github.com/DjedAlliance/Oracle-Solidity/tree/cmu-qatar
https://github.com/DjedAlliance/Oracle-FormalMethods

Formalization – Contracts as Records

14

Formalization – Contracts as Records

15

Formalization – Contracts as Records

16

Formalization – Contracts as Records

17

Formalization – Contracts as Records

18

Formalization – Contracts as Records

19

Formalization – Contracts as Records

20

Formalization – Functions as Definitions

21

Formalization – Functions as Definitions

22

Formalization – Functions as Definitions

23

Formalization – Functions as Definitions

24

Formalization – Functions as Definitions

Returns the modified
Oracle State

25

Formalization – Traces

Separate event for
each contract
function.

Simulation

26

Theorems Proved

Theorem 1: Consumers' credits are always non-negative.

● Sanity check.
● 2 helper lemmas

27

Theorems Proved
Theorem 2: Between any two consecutive ‘DataWrite’ events, every
consumer pays exactly once for obtaining data.

● Goal G2a.
● Requires reasoning on the trace: 9 helper lemmas, 9 fixpoint definitions.

28

Theorems Proved
Theorem 3: The implemented adjustment of the base fee ensures the cost is the same as the
revenue (or the base fee is at its max value) if:
● data was read (there was revenue);
● the write cost remained constant;
● the estimated number of reads and writes was correct (predictability).

29

● Goal G1.
● Proof in progress.
● Requires reasoning on the trace: 8 helper lemmas so far.

Lessons Learned

30

Lessons Learned
🙁 A lot of effort to come up with the right representation.

31

Lessons Learned
🙁 A lot of effort to come up with the right representation.

🙁 Manually keeping the state is cumbersome
(also it relies on our understanding of the virtual machine).

32

Lessons Learned
🙁 A lot of effort to come up with the right representation.

🙁 Manually keeping the state is cumbersome
(also it relies on our understanding of the virtual machine).

🙁 Formally verifying even simple properties takes a lot of time.

33

Lessons Learned
🙁 A lot of effort to come up with the right representation.

🙁 Manually keeping the state is cumbersome
(also it relies on our understanding of the virtual machine).

🙁 Formally verifying even simple properties takes a lot of time.

😃 Thinking about properties to be satisfied guides the protocol design.

34

Lessons Learned
🙁 A lot of effort to come up with the right representation.

🙁 Manually keeping the state is cumbersome
(also it relies on our understanding of the virtual machine).

🙁 Formally verifying even simple properties takes a lot of time.

😃 Thinking about properties to be satisfied guides the protocol design.

😃 Implementation bugs were detected when developing proofs
(since we are forced to look at every case).

35

Lessons Learned
🙁 A lot of effort to come up with the right representation.

🙁 Manually keeping the state is cumbersome
(also it relies on our understanding of the virtual machine).

🙁 Formally verifying even simple properties takes a lot of time.

😃 Thinking about properties to be satisfied guides the protocol design.

😃 Implementation bugs were detected when developing proofs
(since we are forced to look at every case).

🤔 Formalization has potential (smart contract auditing is a thing!) but with the
current state of the tools, it is hard to scale.

36

Thank you for your attention!
Questions?

37

