Self-contained rules for classical and intuitionistic quantifiers

Herman Geuvers and Tonny Hurkens

Radboud University Nijmegen and Technical University Eindhoven NL

Types Conference 2023 Valencia, Spain

Natural deduction rules from truth tables

Earlier work: derive natural deduction rules for a connective c from its truth table definition.

Summarizing:

- Generic rule-format, allowing a general proof-theoretic study.
- Produces both the classical and constructive derivation rules for standard connectives (and for less standard connectives).
- Has "good" properties: proof normalization, subformula property, general Kripke semantics (sound and complete), general classical semantics (sound and complete).
- We can study connectives "in isolation", e.g. from the classic rules for → one can derive Peirce's Law.
- For monotone connectives (like ∧, ∨), the classical and constructice rules are equivalent; for non-monotonic connectives (like →, ¬) this is not the case.
- One classical non-monotonic connective makes all non-monotonic connectives classical.

Extending with rules for quantifiers

- For any quantifier...ideally...
- but now start from 4 relatively simple ones.
- Derive the rules from the truth table...
- but now I'll just give you the simplified rules.

We want the following.

- 1 Simple generic rules, preferably extensible to other quantifiers.
- 2 Intuitionistic rules as a simple variation of the classical ones.
- **3** Study quantifiers and their rules in isolation.
- Proof theoretic properties: (Kripke) semantics, soundness and completeness, proof normalization, subformula property.

Four quantifiers

∀x.φ

The standard \forall -rules are intuitionistic. We give classical rules, so one can derive, in intuitionistic logic + classical \forall , e.g.

- $\forall x.(Px \lor C) \vdash (\forall x.Px) \lor C$
- $\forall x. \neg \neg \varphi \vdash \neg \neg \forall x. \varphi$ (DNS)

∃x.φ

The standard \exists -rules are intuitionistic. We give classical rules, so one can derive, in intuitionistic logic + classical \exists , e.g.

•
$$\vdash \exists x.(\exists y.\varphi(y) \rightarrow \varphi(x)).$$

•
$$\neg \neg \exists x. \varphi \vdash \exists x. \neg \neg \varphi \text{ (DNS for } \exists)$$

Иx.φ, the "no-quantifier"

- meaning: "there is no x for which φ holds".
- $\neg \exists x.\varphi$ and $\forall x.\varphi$ and $\forall x.\neg\varphi$ are equivalent, intuitionistically and classically.
- Jx.φ, the "counterexample-quantifier"
 - meaning: "there is a x for which φ does not hold".
 - $\exists x. \neg \varphi \vdash \Im x. \varphi$ and $\Im x. \varphi \vdash \neg \forall x. \varphi$, but intuitionistically not the other way around.

The first order language and the formulas

The first order language has:

- an arbitrary finite collection of constants and functions with fixed arity,
- an arbitrary finite collection of predicates with fixed arity,
- witness constants $a_{\forall x,\varphi}$ for all formulas $\varphi(x)$, and similarly $a_{\exists x,\varphi}$, $a_{\mathsf{N}x,\varphi}$ and $a_{\Im x,\varphi}$.
- Classical intuition of a witness constant $a_{\forall x.\varphi}$:
 - if $\forall x.\varphi$ holds, $a_{\forall x.\varphi}$ is an arbitrary element
 - if not $\forall x.\varphi$, $a_{\forall x.\varphi}$ is some element d such that $\neg \varphi[d/x]$.
- Similarly for a_{∃x.φ}.
- In the classical semantics, the interpretation of witness constants is exacly that.
- Constructively, the interpretation of witness constants is just the "local fresh parameter" used standardly in deduction rules.

The derivation rules (\forall)

- The judgments are of the form Γ ⊢ φ, where all formulas are closed (and may contain the special witness constants).
- In examples, we write trees, with non-discharged hypotheses (from Γ) on top, and φ at the root.
- We have classical rules, indicated with C, and intuitionistic rules, indicated with I. (If nothing is indicated the rules are both.)

Deduction rules for \forall , where *t* is an arbitrary term. We abbreviate $a_{\forall x,\varphi}$ to a_{\forall} .

$$\frac{\vdash \forall x.\varphi}{\vdash \varphi(t)} \forall -\text{el} \quad \left\| \quad \frac{\vdash \varphi(a_{\forall})}{\vdash \forall x.\varphi} \forall -\text{inC} \quad \frac{\Gamma \vdash \varphi(a_{\forall})}{\Gamma \vdash \forall x.\varphi} \forall -\text{inI, if } a_{\forall} \notin \Gamma \right\|$$

Example "Drinker's principle"

With classical \forall (and intuitionistic \rightarrow , \exists):

$$\vdash \exists x. (P x \rightarrow \forall y. P y).$$

We abbreviate $a_{\forall} := a_{\forall y.Py}$.

$$\frac{\frac{[P a_{\forall}]^{1}}{\forall y.P y} \forall \text{-inC}}{\frac{P a_{\forall} \rightarrow \forall y.P y}{\exists x.(P x \rightarrow \forall y.P y)}} (1)$$

Example "Double Negation Shift"

With classical \forall (and intuitionistic \neg):

 $\forall x. \neg \neg \varphi \vdash \neg \neg \forall x. \varphi.$

We abbreviate $a_{\forall} := a_{\forall x.\varphi}$.

Example "Constant Domain Logic"

With classical \forall (and the rules for \lor , which are the same, intuitionistic or classical), we have (x not in C):

 $\forall x.(P x \lor C) \vdash (\forall x.P x) \lor C.$

We abbreviate $a_{\forall} := a_{\forall x.Px}$.

$$\frac{\forall x.(P \times \lor C)}{P a_{\forall} \lor C} \qquad \frac{\left[\begin{array}{c} P a_{\forall} \end{array}\right]^{1}}{\langle \forall x.P \times \rangle} \forall \text{-inC} \\ \overline{\langle \forall x.P \times \rangle \lor C} \qquad \overline{(\forall x.P \times) \lor C} \\ (\forall x.P \times) \lor C \end{array} \qquad \boxed{[C]^{1}}$$
(1)

It is known that this axiom scheme is complete for Kripke models with constant domains.

Example Markov's Principle

With classical \forall (and the intuitionistic rules for \lor , \neg , \exists), we have:

$$\forall x. (P x \lor \neg P x), \neg \forall x. P x \vdash \exists x. \neg P x.$$

We abbreviate $a_{\forall} := a_{\forall x.Px}$.

$$\frac{\forall x.(P \times \vee \neg P \times)}{P a_{\forall} \vee \neg P a_{\forall}} \qquad \frac{\neg \forall x.P \times \frac{[P a_{\forall}]^{1}}{\forall x.P \times} \forall -\text{inC}}{\exists x.\neg P \times} \qquad \frac{[\neg P a_{\forall}]^{1}}{\exists x.\neg P \times} (1)$$

It was already known that MP follows from the axiom scheme for CDL: $\forall x.(P x \lor C) \vdash (\forall x.P x) \lor C$.

The derivation rules for \exists

Deduction rules for \exists , where *t* is an arbitrary term. We abbreviate $a_{\exists x,\varphi}$ to a_{\exists} .

$$\frac{\vdash \exists x.\varphi}{\vdash \varphi(a_{\exists})} \exists \text{-elC} \quad \frac{\Gamma \vdash \exists x.\varphi \quad \Gamma, \varphi(a_{\exists}) \vdash \psi}{\Gamma \vdash \psi} \exists \text{-elI}^{(*)} \parallel \frac{\vdash \varphi(t)}{\vdash \exists x.\varphi} \exists \text{-in}$$

(*) if $a_\exists \notin \Gamma, \psi$

With classical \exists and intuitionistic \rightarrow we can show the "Existence Principle": $\vdash \exists x.(\exists y.Py) \rightarrow Px$. We abbreviate $a_{\exists} := a_{\exists y.Py}$.

$$\frac{\left[\exists y.P \, y\right]^{1}}{\left[\exists y.P \, y\right]} \exists \text{-elC} \\ \frac{\overline{(\exists y.P \, y)} \to P \, a_{\exists}}{\exists x.(\exists y.P \, y) \to P \, x}$$
(1)

The derivation rules for *I*

Recall $\mathcal{N}_{x,\varphi}$ says "there is no x for which φ holds". Here t is an arbitrary term. We abbreviate $a_{\mathcal{N}_{x,\varphi}}$ to $a_{\mathcal{N}}$.

$$\frac{ \vdash \mathsf{M}x.\varphi \vdash \varphi(t)}{\vdash \psi} \mathsf{M-el}$$

$$\frac{\mathsf{M}x.\varphi \vdash \psi \quad \varphi(\mathsf{a}_{\mathsf{N}}) \vdash \psi}{\vdash \psi} \mathsf{M-inC} \quad \frac{\mathsf{\Gamma},\varphi(\mathsf{a}_{\mathsf{N}}) \vdash \mathsf{M}x.\varphi}{\mathsf{\Gamma} \vdash \mathsf{M}x.\varphi} \mathsf{M-inI}, \text{ if } \mathsf{a}_{\mathsf{N}} \notin \mathsf{\Gamma}$$

The classical interpretation of $a_{Nx,\varphi}$ is:

$$a_{\mathsf{M}x,\varphi} = \begin{cases} \text{an arbitrary element of } D & \text{if } \mathsf{M}x.\varphi \\ \text{some element } d \text{ for which } \varphi(d) & \text{if not } \mathsf{M}x.\varphi. \end{cases}$$

So we will have $\varphi(a_{\mathsf{M}x.\varphi}) \Longleftrightarrow \neg \mathsf{M}x.\varphi$.

Note: in case x doesn't occur in φ , the formula $IX.\varphi$ is just $\neg \varphi$ and the rules are just the rules for negation.

H. Geuvers

The derivation rules for **D**

Recall $\Im x.\varphi$ says "there is an x for which φ does not hold". Here t is an arbitrary term. We abbreviate $a_{\Im x.\varphi}$ to a_{\Im}

$$\frac{\vdash \Im x.\varphi \vdash \varphi(a_{\mathsf{D}})}{\vdash \psi} \operatorname{D-elC} \qquad \frac{\Gamma \vdash \Im x.\varphi \quad \Gamma \vdash \varphi(a_{\mathsf{D}})}{\Gamma \vdash \psi} \operatorname{D-ell}^{(*)}$$
$$\frac{\Im x.\varphi \vdash \psi \quad \varphi(t) \vdash \psi}{\vdash \psi} \operatorname{D-inC} \qquad \frac{\varphi(t) \vdash \Im x.\varphi}{\vdash \Im x.\varphi} \operatorname{D-inI}$$

(*) if $a_{D} \notin \Gamma$ The classical interpretation of $a_{Dx,\varphi}$ is:

$$a_{\mathsf{D}x,\varphi} = \begin{cases} \text{ some element } d \text{ for which not } \varphi(d) & \text{if } \mathsf{D}x.\varphi \\ \text{ an arbitrary element of } D & \text{ if not } \mathsf{D}x.\varphi. \end{cases}$$

So we will have $\varphi(a_{\mathsf{D}x,\varphi}) \iff \neg \mathsf{D}x.\varphi$.

Note: again, if $x \notin \varphi$, we find that $\Im x.\varphi$ is just $\neg \varphi$.

H. Geuvers

What is $\Im x. \varphi$ intuitionistically?

Recall $\Im x.\varphi$ says "there is an x for which φ does not hold".

$$\frac{\Gamma \vdash \Im x.\varphi \quad \Gamma \vdash \varphi(a_{\Im})}{\Gamma \vdash \psi} \operatorname{D-ell}^{(*)} \quad \frac{\varphi(t) \vdash \Im x.\varphi}{\vdash \Im x.\varphi} \operatorname{D-inI}$$

 $\exists x. \neg \varphi \vdash \Im x. \varphi$ and $\Im x. \varphi \vdash \neg \forall x. \varphi$ (but intuitionistically not the other way around).

$$\frac{\exists x. \neg \varphi}{\frac{\neg \varphi(a_{\exists})\right]^{2}}{2x. \varphi} \frac{[\varphi(a_{\exists})]^{1}}{2 - \operatorname{inI}(1)}}{\exists -\operatorname{inI}(2)} \exists -\operatorname{inI}(2) \qquad \frac{\frac{\neg \forall x. \varphi}{\varphi(a_{\bigcirc})}}{\neg \forall x. \varphi} \exists -\operatorname{elI}(1)}{\neg \forall x. \varphi} (1)$$

The Kripke semantics of $\Im x.\varphi$

- $\Im x.\varphi$ is really in between $\exists x.\neg\varphi$ and $\neg\forall x.\varphi$.
- We can make simple Kripke counter models to ⊃x.φ ⊢ ∃x.¬φ and to ¬∀x.φ ⊢ ⊃x.φ.

$$w \Vdash \exists x. \neg \varphi \quad \Leftrightarrow \quad \exists d \in D(w) \, \forall w' \geq w(w' \not\Vdash \varphi(d))$$

$$w \Vdash \Im x.\varphi \quad \Leftrightarrow \quad \forall w' \geq w \ \exists d \in D(w')(w' \nvDash \varphi(d))$$

 $w \Vdash \neg \forall x. \varphi \quad \Leftrightarrow \quad \forall w' \geq w \, \exists w'' \geq w' \, \exists d \in D(w'')(w'' \not \Vdash \varphi(d)).$

The classical rules for \forall, \exists do not make the logic classical

We have the following inclusions, where the top is full classical logic.

- Does ∀Class (or ∃Class) make the logic fully classical? <u>Answer</u>: no, in Kripke models with a constant singleton domain the classical rules for ∀ and ∃ are true.
- Are the ∀Class and ∃Class rules derivable from eachother? <u>Answer</u>: no, there are Kripke models where one is true and the other not and vice versa.

A Kripke model where $\exists Class$ holds and $\forall Class$ not

 $\mathcal{K} := \langle \mathbb{N}, \leq, \mathbb{N}, I, At \rangle$, so domain \mathbb{N} for all worlds $w \in \mathbb{N}$, and \leq is the standard ordering on \mathbb{N} . At $(w) := \{P \ n \mid n \leq w\}$

$$(2, \mathbb{N}, P0, P1, P2)$$

$$(1, \mathbb{N}, P0, P1)$$

$$(0, \mathbb{N}, P0)$$

 $0 \Vdash \exists x. (P x \to \forall y. P y) \text{ only if there is an } n \in \mathbb{N} \text{ such that} \\ \forall w \in \mathbb{N}(w \Vdash P n \Rightarrow w \Vdash \forall y. P y). \text{ Now } w \nvDash \forall y. P y \text{ for all } w, \text{ but} \\ \text{for every } n \in \mathbb{N} \text{ there is a } w \text{ such that } w \Vdash P n. \text{ So} \\ 0 \nvDash \exists x. (P x \to \forall y. P y). \end{cases}$

PROPOSITION

 $\forall \text{Class holds in all Kripke models } \mathcal{K} := \langle W, \leq, D, I, \mathsf{At} \rangle$ where

- D(w) is a fixed domain D for all $w \in W$,
- \leq is a total order
- all subsets S of W have a largest element.

 $\exists Class holds in all Kripke models <math>\mathcal{K} := \langle \mathcal{W}, \leq, D, I, \mathsf{At} \rangle$ where

- D(w) is a fixed domain D for all $w \in W$,
- \leq is a total order
- all subsets S of W have a smallest element.

A more precise logical charachterisation

PROPOSITION

1 Classical \forall is equivalent to the Drinker's Principle. Given Γ, ψ that do not contain witness constants, we have

 $\begin{array}{c} \Gamma \vdash \psi \text{ with classical } \forall \text{ in intuitionistic } \rightarrow \exists \text{-logic} \\ & \longleftrightarrow \\ \Gamma \vdash \psi \text{ with axiom scheme } \vdash \exists y.(\varphi(y) \rightarrow \forall x.\varphi) \\ \text{in intuitionistic } \rightarrow \exists \forall \text{-logic} \end{array}$

2 Classical \exists is equivalent to the Existence Principle. That is, given Γ, ψ that do not contain witness constants, we have

$$\label{eq:relation} \begin{split} \Gamma \vdash \psi \mbox{ with classical } \exists \mbox{ in intuitionistic } \to - \mbox{ logic } \\ & \longleftrightarrow \\ \Gamma \vdash \psi \mbox{ with axiom scheme } \vdash \exists y. (\exists x. \varphi) \to \varphi(y) \\ \mbox{ in intuitionistic } \to \exists - \mbox{ logic } \end{split}$$

Overview of some classically derivable $\forall \exists$ -statements

$$\begin{array}{rcl} \forall x.\neg\neg\varphi & \vdash & \neg\neg\forall x.\varphi & \mathsf{DNS} \\ \neg\neg\exists x.\varphi & \vdash & \exists x.\neg\neg\varphi & \mathsf{DNS} \text{ for } \exists \\ \forall x.(\varphi \lor C) & \vdash & (\forall x.\varphi) \lor C & \mathsf{CDL} \\ C \to \exists x.\varphi & \vdash & \exists x.(C \to \varphi) \end{array}$$

for x not in C.

Summarizing:

- We have "stand alone" natural deduction rules for classical (and intuitionistic) predicate logic ∀, ∃, И, Э.
- The intuitionistic rules are a variation on the classical ones.
- Kripke semantics that is sound (and completeness to be checked in detail).
- Classical semantics that is sound and complete.
- Derivations satisfying the subformula property for a number of well-known classically provable statements.
- The rules follow mostly the "standard form", so proof normalizations should work.

Further work:

- Characterise the precise fragment intuitionistic proposition logic + classical ∀ (or ∃).
- Compare with other known logics extending intuitionistic logic.
- Extend to other quantifiers.
- Proof term interpretation and proof of normalization

Questions?

