Diller-Nahm Bar Recursion

Valentin Blot

INRIA - LMF Univ. Paris-Saclay

A bit of history: computational interpretations

Interpretations of arithmetic

- 1941: Gödel's Dialectica interpretation (published in 1958)
- 1945: Kleene's number realizability
- 1959: Kreisel's modified realizability
- 1974: Diller-Nahm's set-based variant of Dialectica

- Extension to analysis via bar recursion
 - 1962: Spector's bar recursion for Dialectica
 - 1998: Berardi-Bezem-Coquand's demand-driven bar recursion for Kreisel's realizability
 - > 2017: Oliva-Powell's demand-driven bar recursion for Dialectica

Our contributions

Realizability

```
in \stackrel{\mathrm{O}}{A} , \mathrm{O} represents witnesses of A
```

$a \Vdash A$ (if a is a witness of A) means "a realizes A" i.e. a is a "correct" witness

Realizability

```
in \stackrel{\mathrm{O}}{A} , \mathrm{O} represents witnesses of A
```

 $a \Vdash A$ (if a is a witness of A) means "a realizes A" i.e. a is a "correct" witness

proof of a sequent interpreted as a program: $\stackrel{\varphi}{\sim}$ $\Gamma \vdash A$ such that if $a \Vdash \Gamma$ then $\varphi(a) \Vdash A$

input output

Realizability

```
in \stackrel{\bigcirc}{A} , \bigcirc represents witnesses of A
```

 $a \Vdash A$ (if a is a witness of A) means "a realizes A" i.e. a is a "correct" witness

input output

modus ponens

Dialectica

- in $\stackrel{\bigcirc}{\square}_{\square}$, \bigcirc/\square represent witnesses/counter-witnesses of A
- $A_D(a \parallel b)$ (if a is a witness of A and b is a counter-witness of A) means "a wins over b on game A"

Dialectica

in $\stackrel{\circ}{\underset{\Box}{A}}$, $\circ/_{\Box}$ represent witnesses/counter-witnesses of A

 $A_D(a \parallel b)$ (if a is a witness of A and b is a counter-witness of A) means "a wins over b on game A"

Dialectica

in $\stackrel{\scriptstyle ext{O}}{\sqcap}$, \circ/\Box represent witnesses/counter-witnesses of A

 $A_D(a \parallel b)$ (if a is a witness of A and b is a counter-witness of A) means "a wins over b on game A"

modus ponens

Dialectica: negation

$\begin{array}{c} & \varphi \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & &$

Dialectica: negation

$$\int_{\psi}^{\varphi} \int_{b}^{\varphi} \int_{$$

but $\perp_D (_ \parallel _)$ is false and witnesses and counter-witnesses of \perp are meaningless

$$\psi \left(\prod_{i=1}^{a} \vdash \bot \right)$$
 such that **not** $\Gamma_D(a \parallel \psi(a))$

Double-Negation Shift

 $\forall x \neg \neg A \Rightarrow \neg \neg \forall x A$

Double-Negation Shift

$$\forall x \neg \neg A \Rightarrow \neg \neg \forall x A$$

 $\text{DNS} \vdash A \Rightarrow A^{\neg}$ for any formula A

Double-Negation Shift

$$\forall x \neg \neg A \Rightarrow \neg \neg \forall x A$$

 $\mathrm{DNS} \vdash A \Rightarrow A^{\neg}$ for any formula A

HA: Heyting Arithmetic (intuitionistic) COMP: Comprehension Axiom EM: Excluded Middle AC: Axiom of Choice DNS: Double-Negation Shift

 $\begin{array}{l} \mbox{computational interpretation of } DNS \\ \rightsquigarrow \mbox{ computational interpretation of analysis} \end{array}$

<u>A</u>: witnesses of A <u>A</u>: counter-witnesses of A

$$arphi' = arphi \left(\mathbf{a}, \mathbf{b}
ight) \qquad \qquad \psi' = \psi \left(\mathbf{a}, \mathbf{b}
ight)$$

such that if [some condition on $\varphi']$

then $(\forall x A)_D (\psi' \parallel b(\psi'))$,

<u>A</u>: witnesses of A \overline{A} : counter-witnesses of A

$$arphi' = arphi \left({f a,b}
ight) \qquad \qquad \psi' = \psi \left({f a,b}
ight)$$

such that if [some condition on $\varphi']$

then $(\forall x A)_D (\psi' \parallel b(\psi'))$, that is, ψ' wins against $b(\psi')$ on game $\forall x A$

<u>A</u>: witnesses of A \overline{A} : counter-witnesses of A

$$arphi' = arphi \left({f a,b}
ight) \qquad \qquad \psi' = \psi \left({f a,b}
ight)$$

such that if [some condition on $\varphi']$

then $(\forall x A)_D (\psi' \parallel b(\psi'))$, that is, ψ' wins against $b(\psi')$ on game $\forall x A$ that is, $\psi'(n)$ wins against c on game A(n)where $b(\psi') = (n, c)$ Complete approximations, correct sequences

if
$$b: (\mathbb{N} \to \underline{A}) \to \mathbb{N} \times \overline{A}$$

- $[a_0, \ldots, a_{m-1}]$ is a complete approximation if $b_1(a_0, \ldots, a_{m-1}, 0, \ldots, 0, \ldots) < m$
- $\alpha : \mathbb{N} \to \underline{A}$ is a correct sequence if $\alpha(n)$ wins against *c* on A(n), where $b(\alpha) = (n, c)$

Complete approximations, correct sequences

 ψ^\prime is a correct sequence built via successive approximations

$$bar rec [a_0, \dots, a_{m-1}] = \begin{cases} [a_0, \dots, a_{m-1}] \\ \text{if } [a_0, \dots, a_{m-1}] \text{ complete} \\ bar rec [a_0, \dots, a_{m-1}, a] \\ \text{for some well-chosen } a \text{ otherwise} \end{cases}$$

 $\psi' = (bar rec []), 0, \dots, 0, \dots$

Dialectica: the contraction problem

Gödel's Dialectica: play the game and keep the winner requires decidability of the game

Dialectica: the contraction problem

Gödel's Dialectica: play the game and keep the winner requires decidability of the game

Diller-Nahm variant: catch 'em all!

Diller-Nahm interpretation of DNS

$$arphi' = arphi \left({f a,b}
ight) \qquad \qquad \psi' = \psi \left({f a,b}
ight)$$

such that if [some condition on $\varphi']$

then $\exists \alpha \in \psi'$ such that $\forall (n, c) \in b(\alpha)$ α wins against (n, c) on game $\forall x A$

Diller-Nahm interpretation of DNS

 $arphi' = arphi \left({f a,b}
ight) \qquad \qquad \psi' = \psi \left({f a,b}
ight)$

such that if [some condition on $\varphi']$

then $\exists \alpha \in \psi'$ such that $\forall (n, c) \in b(\alpha)$ α wins against (n, c) on game $\forall x A$

that is,
$$\exists \alpha \in \psi'$$
 such that $\forall (n, c) \in b(\alpha)$
 $\alpha(n)$ wins against c on game $A(n)$

Complete approximations, correct sequences, revisited

if
$$b: (\mathbb{N} \to \underline{A}) \to \mathcal{P}(\mathbb{N} \times \overline{A})$$

- $[a_0, \ldots, a_{m-1}]$ is a complete approximation if $\forall (n, c) \in b(a_0, \ldots, a_{m-1}, 0, \ldots, 0, \ldots), n < m$
- $\alpha : \mathbb{N} \to \underline{A}$ is a correct sequence if $\forall (n, c) \in b(\alpha), \alpha(n)$ wins against c on A(n)

Complete approximations, correct sequences, revisited if $b : (\mathbb{N} \to A) \to \mathcal{P}(\mathbb{N} \times \overline{A})$

►
$$[a_0, \ldots, a_{m-1}]$$
 is a complete approximation
if $\forall (n, c) \in b(a_0, \ldots, a_{m-1}, 0, \ldots, 0, \ldots), n < m$

• $\alpha : \mathbb{N} \to \underline{A}$ is a correct sequence if $\forall (n, c) \in b(\alpha), \alpha(n)$ wins against c on A(n)

$$bar rec [a_0, \dots, a_{m-1}] = \begin{cases} \{[a_0, \dots, a_{m-1}]\} \\ \text{if } [a_0, \dots, a_{m-1}] \text{ complete} \\ \bigcup \{bar rec [a_0, \dots, a_{m-1}, a] \mid a \in X\} \\ \text{for some well-chosen } X \text{ otherwise} \end{cases}$$

$$\psi' = \{a_0, \dots, a_{m-1}, 0, \dots, 0, \dots | [a_0, \dots, a_{m-1}] \in bar rec []\}$$

only one sequence of ψ' has to be correct

Demand-driven bar recursion

Until now we built approximations of the form:

n	0	1	 m-1	т		
$\alpha(n)$	<i>a</i> 0	a_1	 a_{m-1}	?	?	?

Demand-driven bar recursion

Until now we built approximations of the form:

n	0	1	 m-1	т		
$\alpha(n)$	<i>a</i> 0	a_1	 a_{m-1}	?	?	?

Bar recursion was extended to arbitrary approximations of the following form, first in the context of realizability and more recently in the context of Dialectica:

n	0	1		m_1		m_2		<i>m</i> 3	
$\alpha(n)$?	a_1	?	a_{m_1}	?	a_{m_2}	?	a_{m_3}	?

The technique shown before in the Diller-Nahm setting extends to demand-driven bar recursion.

Final remarks

...

There are many technicalities:

- \blacktriangleright Extensions are computed via a complex interaction with φ
- Termination of bar recursion is far from being obvious
- Diller-Nahm interpretation requires an implementation of finite sets

In this talk I put all this under the carpet, trying to give general ideas.

If you're interested, details are in the associated FSCD paper (available on my webpage).

thank you