Diller-Nahm Bar Recursion

Valentin Blot
INRIA - LMF
Univ. Paris-Saclay

A bit of history: computational interpretations

- Interpretations of arithmetic
- 1941: Gödel's Dialectica interpretation (published in 1958)
- 1945: Kleene's number realizability
- 1959: Kreisel's modified realizability
- 1974: Diller-Nahm's set-based variant of Dialectica
- Extension to analysis via bar recursion
- 1962: Spector's bar recursion for Dialectica
- 1998: Berardi-Bezem-Coquand's demand-driven bar recursion for Kreisel's realizability
- 2017: Oliva-Powell's demand-driven bar recursion for Dialectica

Our contributions

Realizability

in $\stackrel{\bigcirc}{A}$, o represents witnesses of A
$a \Vdash A$ (if a is a witness of A) means "a realizes A "
i.e. a is a "correct" witness

Realizability

in $\stackrel{\bigcirc}{A}$, o represents witnesses of A
$a \Vdash A$ (if a is a witness of A) means "a realizes A " i.e. a is a "correct" witness
proof of a sequent interpreted as a program:

such that if $a \Vdash \Gamma$ then $\varphi(a) \Vdash A$
input output

Realizability

in $\stackrel{\bigcirc}{A}$, o represents witnesses of A
$a \Vdash A$ (if a is a witness of A) means "a realizes A " i.e. a is a "correct" witness
proof of a sequent interpreted as a program:

such that if $a \Vdash \Gamma$ then $\varphi(a) \Vdash A$
input output
modus ponens

Dialectica

in $\stackrel{O}{\square}$, o/ \square represent witnesses/counter-witnesses of A
$A_{D}(a \| b)$ (if a is a witness of A and b is a counter-witness of A) means " a wins over b on game A "

Dialectica

in $\stackrel{\bigcirc}{\square}, \circ / \square$ represent witnesses/counter-witnesses of A
$A_{D}(a \| b)$ (if a is a witness of A and b is a counter-witness of A) means "a wins over b on game A "


```
such that if \Gamma}\mp@subsup{\Gamma}{D}{}(a|\psi(a,b))\mathrm{ then }\mp@subsup{A}{D}{}(\varphi(a)|b
```

output

Dialectica

in $\stackrel{O}{\square}, \circ / \square$ represent witnesses/counter-witnesses of A
$A_{D}(a \| b)$ (if a is a witness of A and b is a counter-witness of A) means " a wins over b on game A "

output

modus ponens

Dialectica: negation

(

Dialectica: negation

$\underbrace{\varphi}_{b}$ such that if $\Gamma_{D}(a \| \psi(a, b))$ then $\perp_{D}(\varphi(a) \| b)$
but $\perp_{D}(-\|-)$ is false
and witnesses and counter-witnesses of \perp are meaningless
$\psi \stackrel{a}{\Gamma} \stackrel{\Gamma}{\Gamma} \vdash \perp$ such that not $\Gamma_{D}(a \| \psi(a))$

Double-Negation Shift

$$
\forall x \neg \neg A \Rightarrow \neg \neg \forall x A
$$

Double-Negation Shift

$$
\forall x \neg \neg A \Rightarrow \neg \neg \forall x A
$$

DNS $\vdash A \Rightarrow A\urcorner$ for any formula A

Double-Negation Shift

$$
\forall x \neg \neg A \Rightarrow \neg \neg \forall x A
$$

DNS $\vdash A \Rightarrow A\urcorner$ for any formula A

HA: Heyting Arithmetic (intuitionistic) COMP: Comprehension Axiom EM: Excluded Middle AC: Axiom of Choice
DNS: Double-Negation Shift
computational interpretation of DNS
\rightsquigarrow computational interpretation of analysis

Dialectica interpretation of DNS

Dialectica interpretation of DNS

A: witnesses of $A \quad \bar{A}$: counter-witnesses of A

such that if [some condition on φ^{\prime}] then $(\forall x A)_{D}\left(\psi^{\prime} \| b\left(\psi^{\prime}\right)\right)$,

Dialectica interpretation of DNS

A: witnesses of $A \quad \bar{A}$: counter-witnesses of A

such that if [some condition on φ^{\prime}] then $(\forall x A)_{D}\left(\psi^{\prime} \| b\left(\psi^{\prime}\right)\right)$, that is, ψ^{\prime} wins against $b\left(\psi^{\prime}\right)$ on game $\forall x A$

Dialectica interpretation of DNS

A: witnesses of $A \quad \bar{A}$: counter-witnesses of A

such that if [some condition on φ^{\prime}] then $(\forall x A)_{D}\left(\psi^{\prime} \| b\left(\psi^{\prime}\right)\right)$, that is, ψ^{\prime} wins against $b\left(\psi^{\prime}\right)$ on game $\forall x A$ that is, $\psi^{\prime}(n)$ wins against c on game $A(n)$ where $b\left(\psi^{\prime}\right)=(n, c)$

Complete approximations, correct sequences

if $b:(\mathbb{N} \rightarrow \underline{A}) \rightarrow \mathbb{N} \times \bar{A}$

- $\left[a_{0}, \ldots, a_{m-1}\right]$ is a complete approximation if $b_{1}\left(a_{0}, \ldots, a_{m-1}, 0, \ldots, 0, \ldots\right)<m$
- $\alpha: \mathbb{N} \rightarrow \underline{A}$ is a correct sequence
if $\alpha(n)$ wins against c on $A(n)$, where $b(\alpha)=(n, c)$

Complete approximations, correct sequences

if $b:(\mathbb{N} \rightarrow \underline{A}) \rightarrow \mathbb{N} \times \bar{A}$

- $\left[a_{0}, \ldots, a_{m-1}\right]$ is a complete approximation if $b_{1}\left(a_{0}, \ldots, a_{m-1}, 0, \ldots, 0, \ldots\right)<m$
$-\alpha: \mathbb{N} \rightarrow \underline{A}$ is a correct sequence
if $\alpha(n)$ wins against c on $A(n)$, where $b(\alpha)=(n, c)$
ψ^{\prime} is a correct sequence built via successive approximations
bar rec $\left[a_{0}, \ldots, a_{m-1}\right]=\left\{\begin{array}{l}{\left[a_{0}, \ldots, a_{m-1}\right]} \\ \text { if }\left[a_{0}, \ldots, a_{m-1}\right] \text { complete } \\ \operatorname{bar~rec~}\left[a_{0}, \ldots, a_{m-1}, a\right] \\ \text { for some well-chosen } a \text { otherwise }\end{array}\right.$
$\psi^{\prime}=(\operatorname{bar} \operatorname{rec}[]), 0, \ldots, 0, \ldots$

Dialectica: the contraction problem

Gödel's Dialectica: play the game and keep the winner requires decidability of the game

Dialectica: the contraction problem

Gödel's Dialectica: play the game and keep the winner requires decidability of the game

Diller-Nahm variant: catch 'em all!

Diller-Nahm interpretation of DNS

such that if [some condition on φ^{\prime}]
then $\exists \alpha \in \psi^{\prime}$ such that $\forall(n, c) \in b(\alpha)$
α wins against (n, c) on game $\forall x A$

Diller-Nahm interpretation of DNS

such that if [some condition on φ^{\prime}]
then $\exists \alpha \in \psi^{\prime}$ such that $\forall(n, c) \in b(\alpha)$ α wins against (n, c) on game $\forall x A$
that is, $\exists \alpha \in \psi^{\prime}$ such that $\forall(n, c) \in b(\alpha)$
$\alpha(n)$ wins against c on game $A(n)$

Complete approximations, correct sequences, revisited
if $b:(\mathbb{N} \rightarrow \underline{A}) \rightarrow \mathcal{P}(\mathbb{N} \times \overline{\mathcal{A}})$

- $\left[a_{0}, \ldots, a_{m-1}\right]$ is a complete approximation if $\forall(n, c) \in b\left(a_{0}, \ldots, a_{m-1}, 0, \ldots, 0, \ldots\right), n<m$
- $\alpha: \mathbb{N} \rightarrow \underline{A}$ is a correct sequence
if $\forall(n, c) \in b(\alpha), \alpha(n)$ wins against c on $A(n)$

Complete approximations, correct sequences, revisited
if $b:(\mathbb{N} \rightarrow \underline{A}) \rightarrow \mathcal{P}(\mathbb{N} \times \overline{\mathcal{A}})$

- $\left[a_{0}, \ldots, a_{m-1}\right]$ is a complete approximation if $\forall(n, c) \in b\left(a_{0}, \ldots, a_{m-1}, 0, \ldots, 0, \ldots\right), n<m$
- $\alpha: \mathbb{N} \rightarrow \underline{A}$ is a correct sequence if $\forall(n, c) \in b(\alpha), \alpha(n)$ wins against c on $A(n)$
bar rec $\left[a_{0}, \ldots, a_{m-1}\right]=\left\{\begin{array}{l}\left\{\left[a_{0}, \ldots, a_{m-1}\right]\right\} \\ \quad \text { if }\left[a_{0}, \ldots, a_{m-1}\right] \text { complete } \\ \bigcup\left\{\text { bar rec }\left[a_{0}, \ldots, a_{m-1}, a\right] \mid a \in X\right\} \\ \quad \text { for some well-chosen } X \text { otherwise }\end{array}\right.$
$\psi^{\prime}=\left\{a_{0}, \ldots, a_{m-1}, 0, \ldots, 0, \ldots \mid\left[a_{0}, \ldots, a_{m-1}\right] \in \operatorname{bar} r e c[]\right\}$ only one sequence of ψ^{\prime} has to be correct

Demand-driven bar recursion

Until now we built approximations of the form:

n	0	1	\ldots	$m-1$	m	\ldots	\ldots
$\alpha(n)$	a_{0}	a_{1}	\ldots	a_{m-1}	$?$	$?$	$?$

Demand-driven bar recursion

Until now we built approximations of the form:

n	0	1	\ldots	$m-1$	m	\ldots	\ldots
$\alpha(n)$	a_{0}	a_{1}	\ldots	a_{m-1}	$?$	$?$	$?$

Bar recursion was extended to arbitrary approximations of the following form, first in the context of realizability and more recently in the context of Dialectica:

n	0	1	\ldots	m_{1}	\ldots	m_{2}	\ldots	m_{3}	\ldots
$\alpha(n)$	$?$	a_{1}	$?$	$a_{m_{1}}$	$?$	$a_{m_{2}}$	$?$	$a_{m_{3}}$	$?$

The technique shown before in the Diller-Nahm setting extends to demand-driven bar recursion.

Final remarks

There are many technicalities:

- Extensions are computed via a complex interaction with φ
- Termination of bar recursion is far from being obvious
- Diller-Nahm interpretation requires an implementation of finite sets
- ...

In this talk I put all this under the carpet, trying to give general ideas.

If you're interested, details are in the associated FSCD paper (available on my webpage).
thank you

