
 Py*: A Formalization of Python's Execution Machinery

Ammar Karkour and Giselle Reis
Carnegie Mellon University   

Types Conference
Mon 13 June 2023



Overview
● Motivation 

● Research Contribution
● Typing Rules
● Evaluation Rules
● Discussion and Future Work
● Q & A

2



Motivation



● Python was not designed with 
formal rigor.

● The language extends and  
grows very fast.

● Formality: Python source code 
doesn’t have formal semantics.

● Extendability: It is hard to keep 
track with all different 
components.

Challenges of Formalizing Python 

4



“Non-identical instances of a class normally compare as non-equal 
unless the class defines the  __eq__() method or the __cmp__() 

method”

Example of Python’s Informality

5

Documentation:

Reality:

Reason: - a.__eq__(b) returns NotImplemented
- NotImplemented has a Boolean value of True

https://docs.python.org/2/reference/datamodel.html#object.__eq__
https://docs.python.org/2/reference/datamodel.html#object.__cmp__


Previous Formalization Attempts  

● Previous work focus on formalizing Python’s Source code.

○ Forces them to handle very high-level concepts that 
hide a lot of complexities underneath.



Research Contribution



Focus on Bytecode

8

● Why?
○ Simpler and smaller set of instructions.
○ More stable than Source code which implies easier extendability. 
○ It’s  what gets executed at the end. 



Contribution

9

● Bytecode formal semantics
○ Formal semantics for typing and evaluation rules.
○ The system can be extended with rules for built-in classes.
○ Safety by proving progress and preservation. 

● Py*
○ A formally verified implementation of the rules in F*.

● Formally Verified Python Virtual Machine
○ Finally we extract a formally verified executable OCaml code 

of Py*.



Typing



Challenges

11

● Python is a dynamically typed 
object-oriented language:

○ All entities in a python 
program have the same 
type called object.

○ At the source code level 
Python is Statically 
uni-typed. 

Programming Flexibility Type Checking

More errors at run-time

Complex VM formalization



Goals

12

To maintain flexibility and ease of programming in Python while having the safety 
guarantees that we usually have with Static typing.

To ensure practicality by having a modular and extendable design for the typing system.



Program Entities

13

Source Code Objects

List
Int

Tuple
StringBool

Dict
None

Userdef

Function

Virtual Machine Objects

Err

FrameObject

Fun

CodeObject

● To ensure modularity and safety:

○ Separate Source code Objects 
away from VM objects.

○ Define an interface that 
formalizes the interactions 
between Source Code Objects 
and VM Objects.

○ Entails:
■ If new objects are added 

then nothing that was 
already built breaks.



Typing System Design 

14



Definitions of Program States

15

● Py* Functions on Frames which behaves as a program states.







Evaluation



19

Understanding Evaluation

● To understand how the Python’s VM executes compiled bytecode, we used:

○ Python’s bytecode documentations.

○ Investigated cpython source code whenever there were doubts.

● The challenge of english written documentations also appeared to exist in 
bytecode’s documentations.

● cpython is is generally accepted as Python’s reference implementation.



20

Evaluation Rules
● The rules formalize how frames are evaluated and how the frame stack is managed.

● The frame stack has two state:

● We start by Evaluation State:

○ During that state, the top frame f  is evaluated until it becomes ret(v).

● Once this happens:

○ Switch to Return State, which does one of the following:
■ Return the value v to the caller frame (top frame).
■ Spawn a new frame.
■ End evaluation and return v if the frame stack is empty ɛ.

● The evaluation of the frame stack uses the judgment 𝐾 → 𝐾′, where 𝐾 and 𝐾′ are frame stacks.

● The evaluation of frames uses the judgment                    where f and  f ’ are frames, and the arrow is labelled 
with the bytecode operation that is being executed.



Frame Stack Semantics

● Describe how the frame stack is managed and how frames interact with each other (i.e. data 
flow between frames). 



Frame Semantics

● Execute the code object inside a frame. 

● Examples:



Frame Semantics



Objects Extendability

● What is f ?



Safety
● Proving safety (or soundness) of our typing system entails proving that 

well-typed terms do not reach a stuck state, which is a state where no formal 
semantics rule is applicable [Pierce 2002].



Formal Verification
● Py* implements these rules using one function for each bytecode instruction.

● These functions take as input the relevant frame components, and return the updated components.

● We deduce pre and post-conditions from the formal semantic rules:
○ Force them through the use of F*’s dependent typing system and Z3 (F*’s automated theorem prover).

● Example:



Discussion



● The semantics of Py* could be used as a reference for other Python 
interpreter implementations.

● The techniques used for formal verification can be used by other 
virtual machines formalization projects.

Py* is a Reference

28



● Py* could be used to find bugs 
in other Python interpreters.

● By running valid random 
Python code in Py* and other 
Python interpreters then 
observing results that don’t 
match.

● We built an automated testing 
pipeline that we used for 
testing Py*, and we plan on 
extending it with comparisons 
with other VMs.

29

Finding bugs in other interpreters



● We expect executing Speed to be lower than cpython.

○ Abstracting Imperative concepts in a functional environment is 
costly (E.g., hash tables).

● Could be solved by developing Py* in Low* instead of F*.

○ Low* have imperative concepts and code written in it can be 
translated into C code.

○ However, reasoning and formalizing such a thing will be much 
more difficult.

Imporvements



Progress

General instructions

Unary operations

Binary operations

Coroutine 
opcodes

Miscellaneous 
opcodes

Bytecode instructions

Int

String

List

Tuple

Bool None

Function 
calls

Conditionals

Variables 
assignments

Context 
switching

Floats

Dictionaries

Sets
Classes

Loops Exceptions

Python Source Code

● Defined formal semantics rules, implemented, formally verified, and extracted 
OCaml code for the following instructions within the shaped below.

Builtin functions



Future Work

● Support the rest of the bytecode instructions.

● Extend our test-suite to include all cpython’s test-suite.  

● Use the automatic testing pipeline to verify the correctness of 
different Python interpreters.



Any questions?

Thanks!

Ammar Karkour and Giselle Reis


