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Background: Ordinal Analysis

Ordinal analysis is an area in proof theory of mathematical logic

This area aims to measure the strength of a proof system S
by using the order type of a primitive recursive well ordering

1 Formulate a primitive recursive well ordering of the order type α
called an ordinal notation system OT for α

2 Show that α is the proof-theoretic ordinal of the system S:
sup{otype(<) | < is prim. rec. and TI on < is provable in S}

The analysis has been given to:

first-order arithmetic
subsystems of second-order arithmetic
Kripke-Platek set theory
Martin-Löf type theory
· · ·
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Background: Related Work in Ordinal Analysis

Related work:
Setzer [1, 2] MLTT with one universe

Rathjen-Griffor-Palmgren [3] MLTT with the types M and Q (MLQ)
Setzer [4, 5] MLTT with one Mahlo universe (MLM)

Argument in Rathjen-Griffor-Palmgren [3]

formulates the extension CZFπ of Aczel’s CZF with
the existence of Mahlo’s inaccessible sets of all transfinite orders [6]

interprets CZFπ in MLQ by extending Aczel’s interpretation of
CZF in MLTT [7, 8, 9]

This Talk’s Question

Is CZFπ interpretable in MLM?
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Motivation

The proof-theoretic ordinal of MLM was already computed by [4, 5],
so why is an interpretation of CZFπ in MLM interesting?

Understanding Mahlo universes from a different perspective:
Understanding what set-construction is possible in a Mahlo universe

Aczel [7, 8, 9] showed that
the basic set-construction in CZF are interpretable in MLTT
Rathjen-Griffor-Palmgren [3] showed that
inaccessible sets in CZF are interpretable in MLQ
Rathjen [10] showed that
Mahlo sets in CZF are interpretable in MLM

This Talk’s Question in Another Form

Are inaccessible sets in CZF interpretable in MLM?
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Aim

We show that the type-theoretic counterpart Vα
(a,f) of

α-set-inaccessible sets in [3] can be defined in MLM

Informally, an α-set-inaccessible set γ is inaccessible from
β-set-inaccessible sets for any set β in the transitive closure of the set α

In MLQ, Vα
(a,f) was constructed by using the two types M and Q

Q is an inductive type of codes for operators which gives universes
closed under universe operators constructed previously
M is a universe closed under operators in Q

Idea for defining Vα
(a,f) in MLM

Replace M in MLQ with the Mahlo universe V in MLM

Formulate a higher-order universe operator uM which emulates Q

Use the reflection property of the Mahlo universe V to define uM
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Mahlo Universes

Martin-Löf’s motivation for introducing universe types:
a reflection principle saying that “whatever we are used to doing with
types can be done” inside a universe [11]

The Mahlo universe V : Set with the decoding function TV : V → Set
reflects any function on Σ(x:V)(TVx → V)

Construction of a function f on Σ(x:V)(TVx → V) can be done in a

subuniverse Ûf of V

Γ ⊢ f : Σ(x:V)(TVx → V) → Σ(x:V)(TVx → V)

Γ ⊢ Ûf : V
Û-I

TVÛf = Uf

Ûf is a subuniverse of V with the decoding function T̂f : Uf → V

such that (Ûf , T̂f ) is closed under f
res0f and res1f provide the restriction of f to Uf

λy.(res0f y, res1f y) : Σ(x:Uf )(Tfx → Uf ) → Σ(x:Uf )(Tfx → Uf )
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An Example of Subuniverses of a Mahlo Universe

Super Universe

By reflecting z : Σ(x:V)(TVx → V) ⊢ λy.z : Σ(x:V)(TVx → V) →
Σ(x:V)(TVx → V), we have (Ûf1 , T̂f1) with f1 := λy.z

Put g := λz.(Ûf1 , T̂f1) : Σ(x:V)(TVx → V) → Σ(x:V)(TVx → V)

then we obtain (Ûg, T̂g) by reflection again

(Ûg, T̂g) is a super universe because g is a universe operator
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Idea for Defining Vα
(a,f)

Put Fam(V) := Σ(x:V)(TVx → V)

the type O of first-order operators, and
the type Fam(O) of families of first-order operators:

O := Fam(V) → Fam(V), Fam(O) := Σ(x:V)(TVx → O)

Our definition of Vα
(a,f) takes three steps:

Three Steps towards Vα
(a,f)

1 Given (z, v) : Fam(O), define a function fM : O such that
fM simulates each operator in (z, v)

2 By reflecting fM in V, define the higher-order universe operator uM

providing a universe closed under any operator in (z, v) : Fam(O)

3 Iterate uM along a given iterative set α : W(x:V)TVx by using
transfinite induction on the transitive closure of α
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Step 1: Composing Operators into One

For any (z, v) : Fam(O), we have

v y1 : O with y1 : TVz
v y2 : O with y2 : TVz

...

(Recall that z : V and TV is the decoding function of V)

Compose these operators into an operator fM : O
(the details are omitted here)

fM simulates v y : O for each y : TVz
In addition, we make it possible for fM to simulate a given
(x, y) : Fam(V)

So fM has (z, v) and (x, y) as parameters, and can be written as
fM[z, v, x, y]
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Step 2: Higher-Order Universe Operator uM

Since fM[z, v, x, y] is of type O, we are able to reflect it in V

Γ ⊢ fM[z, v, x, y] : Σ(x:V)(TVx → V) → Σ(x:V)(TVx → V)

Γ ⊢ ÛfM[z,v,x,y] : V
Û-I

ÛfM[z,v,x,y] is a subuniverse of V such that

ÛfM[z,v,x,y] is closed under each operator in (z, v) : Fam(O)

ÛfM[z,v,x,y] has the codes of x : V and y w for each w : TVx

We then define uM : Fam(O) → O as

uM (z, v) (x, y) := (ÛfM[z,v,x,y], T̂fM[z,v,x,y])

uM is a higher-order universe operator in Palmgren’s sense [12]
because it takes a family of first-order operators as an argument
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ÛfM[z,v,x,y] is a subuniverse of V such that
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Step 3: Iterating uM Transfinitely

The type V of Aczel’s iterative sets is defined as V := W(x:V)TVx
with index : V → V and pred : Π(x:V)TV(index x) → V s.t.
index (sup a f) = a and pred (sup a f) = f

We also define the transitive closure αtc of α for each α : V

Transfinite Induction on αtc

tcTI : Π(α:V)(Π(x:TV(index αtc))F (pred αtc x) → F α) → Π(α:V)F α
Here the IH says “Assume that F β holds for any β ∈ αtc.”

By transfinite recursion on αtc, we iterate uM transfinitely
This gives an α-th subuniverse Mα

(a,f) being closed under each

universe operators obtained by iterating uM up to β for all β ∈ αtc

Let Tα
(a,f) be the decoding function of Mα

(a,f),
then define the type Vα

(a,f) as

Vα
(a,f) := W(x:Mα

(a,f)
)T

α
(a,f)x
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Concluding Remarks

We have defined the type-theoretic counterpart Vα
(a,f) of

α-set-inaccessible sets by using one Mahlo universe
https://github.com/takahashi-yt/czf-in-mahlo

Future work:

Show that Vα
(a,f) is indeed α-set-inaccessible, and

finish the proof that CZFπ is interpretable in MLM
Formulate a further large set-construction in CZF, and
interpret in MLTT
Try to interpret induction-recursion in MLM: Our construction of
Vα
(a,f) includes a simulation of the types M and Q in MLQ,

which are defined by induction-recursion
See our construction from the viewpoint of recent type-theoretic
approaches to ordinals in the context of homotopy type theory [13, 14]
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See our construction from the viewpoint of recent type-theoretic
approaches to ordinals in the context of homotopy type theory [13, 14]

Yuta Takahashi Inaccessible Sets in MLTT with One Mahlo Universe 12 / 17

https://github.com/takahashi-yt/czf-in-mahlo


Concluding Remarks

We have defined the type-theoretic counterpart Vα
(a,f) of

α-set-inaccessible sets by using one Mahlo universe
https://github.com/takahashi-yt/czf-in-mahlo

Future work:

Show that Vα
(a,f) is indeed α-set-inaccessible, and

finish the proof that CZFπ is interpretable in MLM
Formulate a further large set-construction in CZF, and
interpret in MLTT
Try to interpret induction-recursion in MLM: Our construction of
Vα
(a,f) includes a simulation of the types M and Q in MLQ,

which are defined by induction-recursion
See our construction from the viewpoint of recent type-theoretic
approaches to ordinals in the context of homotopy type theory [13, 14]

Yuta Takahashi Inaccessible Sets in MLTT with One Mahlo Universe 12 / 17

https://github.com/takahashi-yt/czf-in-mahlo


Thank you for your attention!
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Definition of uM

Definition (Higher-Order Universe Operator uM)

Let (z, v) : Fam(O) and (x, y) : Fam(V) be given. Define a function

h : Π(w:Fam(V))

(
((N1 +TVx) + TVz) + Σ(w′:TVz)TVp1(v w

′ w) → V
)

by

h w (i(i(i x1))) = x with x1 : N1, (1)

h w (i(i(j x2))) = y x2 with x2 : TVx, (2)

h w (i(j y1)) = p1(v y1 w) with y1 : TVz, (3)

h w (j (y1, z1)) = p2(v y1 w) z1 with y1 : TVz and z1 : TVp1(v y1 w). (4)

Put fM[z, v, x, y] := λw.(((N̂1V +̂V x) +̂V z) +̂V Σ̂V(z, (w
′)p1(v w

′ w)), h w).
We then define uM : Fam(O) → O as

uM (z, v) (x, y) := (ÛfM[z,v,x,y], T̂fM[z,v,x,y]) by reflecting fM[z, v, x, y] in V.
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Definition of Vα
(a,f)

The transfinite induction tcTI on the transitive closure αtc of α : V is
definable:

tcTI : Π(α:V)(Π(x:TV(index αtc))F (pred αtc x) → F α) → Π(α:V)F α

Definition (The Type Vα
(a,f) of α-Iterative Sets)

Put Φ : V → O as

Φ α = tcTI (λβ.λx.uM (index βtc, x)) α.

For any a : V and f : TVa → V, we define the α-th subuniverse Mα
(a,f) of V and

the type Vα
(a,f) of α-th iterative sets on Mα

(a,f) as follows:

Mα
(a,f) := TV(p1(Φ α (a, f)))

Tα
(a,f) := λx.TV(p2(Φ α (a, f)) x)

Vα
(a,f) := W(x:Mα

(a,f)
)T

α
(a,f)x
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