Towards an Interpretation of Inaccessible Sets in Martin-Löf Type Theory with One Mahlo Universe

Yuta Takahashi¹

Ochanomizu University

June 13th, 2023

¹This work is supported by JSPS KAKENHI Grant Number JP21K12822.

- Ordinal analysis is an area in proof theory of mathematical logic
- This area aims to measure the strength of a proof system S by using the order type of a primitive recursive well ordering

- Ordinal analysis is an area in proof theory of mathematical logic
- This area aims to measure the strength of a proof system S by using the order type of a primitive recursive well ordering

 - Show that α is the proof-theoretic ordinal of the system S: sup{otype(<) | < is prim. rec. and TI on < is provable in S}</p>

- Ordinal analysis is an area in proof theory of mathematical logic
- This area aims to measure the strength of a proof system S by using the order type of a primitive recursive well ordering

 - Show that α is the proof-theoretic ordinal of the system S: sup{otype(<) | < is prim. rec. and TI on < is provable in S}</p>
- The analysis has been given to:
 - first-order arithmetic
 - subsystems of second-order arithmetic
 - Kripke-Platek set theory
 - Martin-Löf type theory

• • • •

Background: Related Work in Ordinal Analysis

• Related work:

Setzer [1, 2]	MLTT with one universe
Rathjen-Griffor-Palmgren [3]	MLTT with the types $\mathrm M$ and $\mathrm Q~(\mathbf{MLQ})$
Setzer [4, 5]	MLTT with one Mahlo universe (\mathbf{MLM})

Background: Related Work in Ordinal Analysis

• Related work:

Setzer [1, 2]	MLTT with one universe
Rathjen-Griffor-Palmgren [3]	MLTT with the types ${ m M}$ and ${ m Q}$ $({ m MLQ})$
Setzer [4, 5]	MLTT with one Mahlo universe (\mathbf{MLM})

Argument in Rathjen-Griffor-Palmgren [3]

- formulates the extension CZF_π of Aczel's CZF with the existence of Mahlo's inaccessible sets of all transfinite orders [6]
- interprets \mathbf{CZF}_{π} in \mathbf{MLQ} by extending Aczel's interpretation of \mathbf{CZF} in MLTT [7, 8, 9]

Background: Related Work in Ordinal Analysis

• Related work:

Setzer [1, 2]	MLTT with one universe
Rathjen-Griffor-Palmgren [3]	MLTT with the types ${ m M}$ and ${ m Q}$ $({ m MLQ})$
Setzer [4, 5]	MLTT with one Mahlo universe (\mathbf{MLM})

Argument in Rathjen-Griffor-Palmgren [3]

- formulates the extension CZF_π of Aczel's CZF with the existence of Mahlo's inaccessible sets of all transfinite orders [6]
- interprets \mathbf{CZF}_{π} in \mathbf{MLQ} by extending Aczel's interpretation of \mathbf{CZF} in MLTT [7, 8, 9]

This Talk's Question

Is \mathbf{CZF}_{π} interpretable in \mathbf{MLM} ?

 The proof-theoretic ordinal of MLM was already computed by [4, 5], so why is an interpretation of CZF_π in MLM interesting?

- The proof-theoretic ordinal of MLM was already computed by [4, 5], so why is an interpretation of CZF_π in MLM interesting?
- Understanding Mahlo universes from a different perspective: Understanding what set-construction is possible in a Mahlo universe
 - Aczel [7, 8, 9] showed that the basic set-construction in CZF are interpretable in MLTT
 - Rathjen-Griffor-Palmgren [3] showed that inaccessible sets in CZF are interpretable in MLQ
 - Rathjen [10] showed that Mahlo sets in CZF are interpretable in MLM

- The proof-theoretic ordinal of MLM was already computed by [4, 5], so why is an interpretation of CZF_π in MLM interesting?
- Understanding Mahlo universes from a different perspective: Understanding what set-construction is possible in a Mahlo universe
 - Aczel [7, 8, 9] showed that the basic set-construction in CZF are interpretable in MLTT
 - Rathjen-Griffor-Palmgren [3] showed that inaccessible sets in CZF are interpretable in MLQ
 - Rathjen [10] showed that Mahlo sets in CZF are interpretable in MLM

This Talk's Question in Another Form

Are inaccessible sets in CZF interpretable in MLM?

- We show that the type-theoretic counterpart $\mathcal{V}^{\alpha}_{(a,f)}$ of α -set-inaccessible sets in [3] can be defined in MLM
 - Informally, an α -set-inaccessible set γ is inaccessible from β -set-inaccessible sets for any set β in the transitive closure of the set α

- We show that the type-theoretic counterpart $\mathcal{V}^{\alpha}_{(a,f)}$ of α -set-inaccessible sets in [3] can be defined in MLM
 - Informally, an α -set-inaccessible set γ is inaccessible from β -set-inaccessible sets for any set β in the transitive closure of the set α
- In MLQ, $\mathcal{V}^{lpha}_{(a,f)}$ was constructed by using the two types M and Q
 - $\bullet~{\rm Q}$ is an inductive type of codes for operators which gives universes closed under universe operators constructed previously
 - ${\ensuremath{\, \bullet }}\xspace{1.5ex}\xspace{1$

- We show that the type-theoretic counterpart $\mathcal{V}^{\alpha}_{(a,f)}$ of α -set-inaccessible sets in [3] can be defined in MLM
 - Informally, an α -set-inaccessible set γ is inaccessible from β -set-inaccessible sets for any set β in the transitive closure of the set α
- In MLQ, $\mathcal{V}^{lpha}_{(a,f)}$ was constructed by using the two types M and Q
 - Q is an inductive type of codes for operators which gives universes closed under universe operators constructed previously
 - ${\ensuremath{\, \bullet \,}}$ M is a universe closed under operators in Q

Idea for defining $\mathcal{V}^{\alpha}_{(a,f)}$ in MLM

 \bullet Replace M in \mathbf{MLQ} with the Mahlo universe V in \mathbf{MLM}

- We show that the type-theoretic counterpart $\mathcal{V}^{\alpha}_{(a,f)}$ of α -set-inaccessible sets in [3] can be defined in MLM
 - Informally, an α -set-inaccessible set γ is inaccessible from β -set-inaccessible sets for any set β in the transitive closure of the set α
- In MLQ, $\mathcal{V}^{lpha}_{(a,f)}$ was constructed by using the two types M and Q
 - $\bullet~{\rm Q}$ is an inductive type of codes for operators which gives universes closed under universe operators constructed previously
 - ${\ensuremath{\, \bullet \,}}$ M is a universe closed under operators in Q

Idea for defining $\mathcal{V}^{\alpha}_{(a,f)}$ in **MLM**

- \bullet Replace M in \mathbf{MLQ} with the Mahlo universe V in \mathbf{MLM}
- \bullet Formulate a higher-order universe operator $u^{\mathbb{M}}$ which emulates Q
 - $\bullet\,$ Use the reflection property of the Mahlo universe V to define $u^{\mathbb{M}}$

Mahlo Universes

• Martin-Löf's motivation for introducing universe types: a reflection principle saying that "whatever we are used to doing with types can be done" inside a universe [11]

Mahlo Universes

- Martin-Löf's motivation for introducing universe types: a reflection principle saying that "whatever we are used to doing with types can be done" inside a universe [11]
- The Mahlo universe V : Set with the decoding function $T_V : V \to Set$ reflects any function on $\Sigma_{(x:V)}(T_V x \to V)$
 - Construction of a function f on $\Sigma_{(x:V)}({\rm T}_{\rm V}x\to{\rm V})$ can be done in a subuniverse $\widehat{\rm U}_f$ of ${\rm V}$

$$\frac{\Gamma \vdash f: \Sigma_{(x:\mathcal{V})}(\mathcal{T}_{\mathcal{V}} x \to \mathcal{V}) \to \Sigma_{(x:\mathcal{V})}(\mathcal{T}_{\mathcal{V}} x \to \mathcal{V})}{\Gamma \vdash \widehat{\mathcal{U}}_{f}: \mathcal{V}} \ \widehat{\mathcal{U}}^{-I} \qquad \mathcal{T}_{\mathcal{V}} \widehat{\mathcal{U}}_{f} = \mathcal{U}_{f}$$

 \widehat{U}_f is a subuniverse of V with the decoding function $\widehat{T}_f : U_f \to V$ such that $(\widehat{U}_f, \widehat{T}_f)$ is closed under f

Mahlo Universes

- Martin-Löf's motivation for introducing universe types: a reflection principle saying that "whatever we are used to doing with types can be done" inside a universe [11]
- The Mahlo universe V : Set with the decoding function $T_V : V \to Set$ reflects any function on $\Sigma_{(x:V)}(T_V x \to V)$
 - Construction of a function f on $\Sigma_{(x:V)}({\rm T}_{\rm V}x\to{\rm V})$ can be done in a subuniverse $\widehat{\rm U}_f$ of ${\rm V}$

$$\frac{\Gamma \vdash f: \Sigma_{(x:V)}(\mathbf{T}_{\mathbf{V}} x \to \mathbf{V}) \to \Sigma_{(x:V)}(\mathbf{T}_{\mathbf{V}} x \to \mathbf{V})}{\Gamma \vdash \widehat{\mathbf{U}}_{f}: \mathbf{V}} \quad \widehat{\mathbf{U}}\text{-}I \qquad \mathbf{T}_{\mathbf{V}}\widehat{\mathbf{U}}_{f} = \mathbf{U}_{f}$$

 \widehat{U}_f is a subuniverse of V with the decoding function $\widehat{T}_f : U_f \to V$ such that $(\widehat{U}_f, \widehat{T}_f)$ is closed under f• res_f^0 and res_f^1 provide the restriction of f to U_f

 $\lambda y.(\operatorname{res}_{f}^{0} y, \operatorname{res}_{f}^{1} y): \Sigma_{(x:U_{f})}(\mathbf{T}_{f}x \to \mathbf{U}_{f}) \to \Sigma_{(x:U_{f})}(\mathbf{T}_{f}x \to \mathbf{U}_{f})$

Super Universe

- By reflecting $z : \Sigma_{(x:V)}(T_V x \to V) \vdash \lambda y.z : \Sigma_{(x:V)}(T_V x \to V) \to \Sigma_{(x:V)}(T_V x \to V)$, we have $(\widehat{U}_{f_1}, \widehat{T}_{f_1})$ with $f_1 := \lambda y.z$
- Put g := λz.(Û_{f1}, Î_{f1}) : Σ_(x:V)(T_Vx → V) → Σ_(x:V)(T_Vx → V) then we obtain (Û_g, Î_g) by reflection again
 (Û_q, Î_q) is a super universe because g is a universe operator

Yuta Takahashi Inaccessible Sets in MLTT with One Mahlo Universe 7/1

- Put $Fam(V) := \Sigma_{(x:V)}(T_V x \to V)$
- the type O of first-order operators, and the type Fam(O) of families of first-order operators:

 $O := Fam(V) \rightarrow Fam(V), Fam(O) := \Sigma_{(x:V)}(T_V x \rightarrow O)$

• Our definition of $\mathcal{V}^{lpha}_{(a,f)}$ takes three steps:

- Put $Fam(V) := \Sigma_{(x:V)}(T_V x \to V)$
- the type O of first-order operators, and the type Fam(O) of families of first-order operators:

 $O := Fam(V) \rightarrow Fam(V), Fam(O) := \Sigma_{(x:V)}(T_V x \rightarrow O)$

• Our definition of $\mathcal{V}^{lpha}_{(a,f)}$ takes three steps:

Three Steps towards $\mathcal{V}^{\alpha}_{(a,f)}$

• Given (z, v): Fam(O), define a function $f^{\mathbb{M}}$: O such that $f^{\mathbb{M}}$ simulates each operator in (z, v)

- Put $Fam(V) := \Sigma_{(x:V)}(T_V x \to V)$
- the type O of first-order operators, and the type Fam(O) of families of first-order operators:

 $O := Fam(V) \rightarrow Fam(V), Fam(O) := \Sigma_{(x:V)}(T_V x \rightarrow O)$

• Our definition of $\mathcal{V}^{lpha}_{(a,f)}$ takes three steps:

Three Steps towards $\mathcal{V}^{lpha}_{(a,f)}$

- Given (z, v): Fam(O), define a function $f^{\mathbb{M}}$: O such that $f^{\mathbb{M}}$ simulates each operator in (z, v)
- Sy reflecting f^M in V, define the higher-order universe operator u^M providing a universe closed under any operator in (z, v) : Fam(O)

- Put $Fam(V) := \Sigma_{(x:V)}(T_V x \to V)$
- the type O of first-order operators, and the type Fam(O) of families of first-order operators:

 $O := Fam(V) \rightarrow Fam(V), Fam(O) := \Sigma_{(x:V)}(T_V x \rightarrow O)$

• Our definition of $\mathcal{V}^{lpha}_{(a,f)}$ takes three steps:

Three Steps towards $\mathcal{V}^{\alpha}_{(a,f)}$

- Given (z, v) : Fam(O), define a function $f^{\mathbb{M}}$: O such that $f^{\mathbb{M}}$ simulates each operator in (z, v)
- ② By reflecting f^M in V, define the higher-order universe operator u^M providing a universe closed under any operator in (z, v) : Fam(O)
- Iterate $u^{\mathbb{M}}$ along a given iterative set $\alpha : W_{(x:V)}T_{V}x$ by using transfinite induction on the transitive closure of α

Step 1: Composing Operators into One

• For any (z, v) : Fam(O), we have $v y_1 : O$ with $y_1 : T_V z$ $v y_2 : O$ with $y_2 : T_V z$ \vdots

(Recall that z : V and T_V is the decoding function of V)

Step 1: Composing Operators into One

```
• For any (z, v) : Fam(O), we have

v y_1 : O with y_1 : T_V z

v y_2 : O with y_2 : T_V z

:
```

(Recall that z:V and T_V is the decoding function of V)

- Compose these operators into an operator $f^{\mathbb{M}}: \mathcal{O}$ (the details are omitted here)
 - $f^{\mathbb{M}}$ simulates v y : O for each $y : T_{V}z$
 - In addition, we make it possible for $f^{\mathbb{M}}$ to simulate a given $(x,y):\mathrm{Fam}(\mathrm{V})$
- So $f^{\mathbb{M}}$ has (z,v) and (x,y) as parameters, and can be written as $f^{\mathbb{M}}[z,v,x,y]$

Step 2: Higher-Order Universe Operator u^{M}

• Since $f^{\mathbb{M}}[z, v, x, y]$ is of type O, we are able to reflect it in V

$$\frac{\Gamma \vdash f^{\mathbb{M}}[z, v, x, y] : \Sigma_{(x:V)}(\mathrm{T}_{\mathrm{V}} x \to \mathrm{V}) \to \Sigma_{(x:V)}(\mathrm{T}_{\mathrm{V}} x \to \mathrm{V})}{\Gamma \vdash \widehat{\mathrm{U}}_{f^{\mathbb{M}}[z, v, x, y]} : \mathrm{V}} \widehat{\mathrm{U}} \cdot I$$

$$\begin{split} &\widehat{\mathrm{U}}_{f^{\mathbb{M}}[z,v,x,y]} \text{ is a subuniverse of } \mathrm{V} \text{ such that} \\ & \bullet \ \widehat{\mathrm{U}}_{f^{\mathbb{M}}[z,v,x,y]} \text{ is closed under each operator in } (z,v):\mathrm{Fam}(\mathrm{O}) \\ & \bullet \ \widehat{\mathrm{U}}_{f^{\mathbb{M}}[z,v,x,y]} \text{ has the codes of } x:\mathrm{V} \text{ and } y \, w \text{ for each } w:\mathrm{T}_{\mathrm{V}} x \end{split}$$

Step 2: Higher-Order Universe Operator u^{M}

۵

• Since $f^{\mathbb{M}}[z, v, x, y]$ is of type O, we are able to reflect it in V

$$\frac{\Gamma \vdash f^{\mathbb{M}}[z, v, x, y] : \Sigma_{(x:V)}(\mathrm{T}_{\mathrm{V}} x \to \mathrm{V}) \to \Sigma_{(x:V)}(\mathrm{T}_{\mathrm{V}} x \to \mathrm{V})}{\Gamma \vdash \widehat{\mathrm{U}}_{f^{\mathbb{M}}[z, v, x, y]} : \mathrm{V}} \widehat{\mathrm{U}} \cdot I$$

$$\mathbf{u}^{\mathbb{M}}\left(z,v\right)\left(x,y\right):=(\widehat{\mathbf{U}}_{f^{\mathbb{M}}\left[z,v,x,y\right]},\widehat{\mathbf{T}}_{f^{\mathbb{M}}\left[z,v,x,y\right]})$$

• $u^{\mathbb{M}}$ is a higher-order universe operator in Palmgren's sense [12] because it takes a family of first-order operators as an argument

Step 3: Iterating u[™] Transfinitely

- The type V of Aczel's iterative sets is defined as V := W_(x:V)T_Vx with index : V → V and pred : Π_(x:V)T_V(index x) → V s.t. index (sup a f) = a and pred (sup a f) = f
- We also define the transitive closure α_{tc} of α for each $\alpha: \mathbf{V}$

Step 3: Iterating $u^{\mathbb{M}}$ Transfinitely

- The type V of Aczel's iterative sets is defined as $\mathbf{V} := W_{(x:V)}T_V x$ with index : $\mathbf{V} \to V$ and pred : $\Pi_{(x:\mathbf{V})}T_V(\text{index } x) \to \mathbf{V}$ s.t. index (sup a f) = a and pred (sup a f) = f
- We also define the transitive closure α_{tc} of α for each $\alpha : \mathbf{V}$

Transfinite Induction on $\alpha_{ m tc}$

 ${\rm tcTI}: \Pi_{(\alpha:\mathbf{V})}(\Pi_{(x:T_{\mathbf{V}}({\rm index}\;\alpha_{{\rm tc}}))}F \ ({\rm pred}\;\alpha_{{\rm tc}}\;x) \to F \;\alpha) \to \Pi_{(\alpha:\mathbf{V})}F \;\alpha$ Here the IH says "Assume that $F \;\beta$ holds for any $\beta \in \alpha_{{\rm tc}}$."

Step 3: Iterating $u^{\mathbb{M}}$ Transfinitely

- The type V of Aczel's iterative sets is defined as $\mathbf{V} := W_{(x:V)}T_Vx$ with index : $\mathbf{V} \to V$ and pred : $\Pi_{(x:\mathbf{V})}T_V(\text{index } x) \to \mathbf{V}$ s.t. index (sup a f) = a and pred (sup a f) = f
- We also define the transitive closure α_{tc} of α for each $\alpha: \mathbf{V}$

Transfinite Induction on $lpha_{ m tc}$

 $\operatorname{tcTI}: \Pi_{(\alpha:\mathbf{V})}(\Pi_{(x:T_{\mathbf{V}}(\operatorname{index} \alpha_{\operatorname{tc}}))}F (\operatorname{pred} \alpha_{\operatorname{tc}} x) \to F \alpha) \to \Pi_{(\alpha:\mathbf{V})}F \alpha$ Here the IH says "Assume that $F \beta$ holds for any $\beta \in \alpha_{\operatorname{tc}}$."

- \bullet By transfinite recursion on $\alpha_{tc},$ we iterate $u^{\mathbb{M}}$ transfinitely
 - This gives an α -th subuniverse $\mathcal{M}^{\alpha}_{(a,f)}$ being closed under each universe operators obtained by iterating $\mathbf{u}^{\mathbb{M}}$ up to β for all $\beta \in \alpha_{\mathrm{tc}}$

Step 3: Iterating $u^{\mathbb{M}}$ Transfinitely

- The type V of Aczel's iterative sets is defined as $\mathbf{V} := W_{(x:V)}T_Vx$ with index : $\mathbf{V} \to V$ and pred : $\Pi_{(x:\mathbf{V})}T_V(\text{index } x) \to \mathbf{V}$ s.t. index (sup a f) = a and pred (sup a f) = f
- We also define the transitive closure α_{tc} of α for each $\alpha: \mathbf{V}$

Transfinite Induction on $lpha_{ m tc}$

 $\operatorname{tcTI}: \Pi_{(\alpha:\mathbf{V})}(\Pi_{(x:T_{\mathbf{V}}(\operatorname{index} \alpha_{\operatorname{tc}}))}F (\operatorname{pred} \alpha_{\operatorname{tc}} x) \to F \alpha) \to \Pi_{(\alpha:\mathbf{V})}F \alpha$ Here the IH says "Assume that $F \beta$ holds for any $\beta \in \alpha_{\operatorname{tc}}$."

- \bullet By transfinite recursion on $\alpha_{tc},$ we iterate $u^{\mathbb{M}}$ transfinitely
 - This gives an α-th subuniverse M^α_(a,f) being closed under each universe operators obtained by iterating u^M up to β for all β ∈ α_{tc}
- Let $\mathrm{T}^\alpha_{(a,f)}$ be the decoding function of $\mathcal{M}^\alpha_{(a,f)}$, then define the type $\mathcal{V}^\alpha_{(a,f)}$ as

$$\mathcal{V}^{\alpha}_{(a,f)} := \mathbf{W}_{(x:\mathcal{M}^{\alpha}_{(a,f)})} \mathbf{T}^{\alpha}_{(a,f)} x$$

• We have defined the type-theoretic counterpart $\mathcal{V}^{\alpha}_{(a,f)}$ of α -set-inaccessible sets by using one Mahlo universe https://github.com/takahashi-yt/czf-in-mahlo

- We have defined the type-theoretic counterpart $\mathcal{V}^{\alpha}_{(a,f)}$ of α -set-inaccessible sets by using one Mahlo universe https://github.com/takahashi-yt/czf-in-mahlo
- Future work:
 - Show that $\mathcal{V}^{\alpha}_{(a,f)}$ is indeed α -set-inaccessible, and finish the proof that \mathbf{CZF}_{π} is interpretable in \mathbf{MLM}

- We have defined the type-theoretic counterpart $\mathcal{V}^{\alpha}_{(a,f)}$ of α -set-inaccessible sets by using one Mahlo universe https://github.com/takahashi-yt/czf-in-mahlo
- Future work:
 - Show that $\mathcal{V}^{\alpha}_{(a,f)}$ is indeed α -set-inaccessible, and finish the proof that \mathbf{CZF}_{π} is interpretable in MLM
 - $\bullet\,$ Formulate a further large set-construction in ${\bf CZF},$ and interpret in MLTT

- We have defined the type-theoretic counterpart $\mathcal{V}^{\alpha}_{(a,f)}$ of α -set-inaccessible sets by using one Mahlo universe https://github.com/takahashi-yt/czf-in-mahlo
- Future work:
 - Show that $\mathcal{V}^{\alpha}_{(a,f)}$ is indeed α -set-inaccessible, and finish the proof that \mathbf{CZF}_{π} is interpretable in MLM
 - $\bullet\,$ Formulate a further large set-construction in ${\bf CZF},$ and interpret in MLTT
 - Try to interpret induction-recursion in MLM: Our construction of $\mathcal{V}^{\alpha}_{(a,f)}$ includes a simulation of the types M and Q in MLQ, which are defined by induction-recursion

- We have defined the type-theoretic counterpart $\mathcal{V}^{\alpha}_{(a,f)}$ of α -set-inaccessible sets by using one Mahlo universe https://github.com/takahashi-yt/czf-in-mahlo
- Future work:
 - Show that $\mathcal{V}^{\alpha}_{(a,f)}$ is indeed α -set-inaccessible, and finish the proof that \mathbf{CZF}_{π} is interpretable in MLM
 - $\bullet\,$ Formulate a further large set-construction in ${\bf CZF},$ and interpret in MLTT
 - Try to interpret induction-recursion in MLM: Our construction of $\mathcal{V}^{\alpha}_{(a,f)}$ includes a simulation of the types M and Q in MLQ, which are defined by induction-recursion
 - See our construction from the viewpoint of recent type-theoretic approaches to ordinals in the context of homotopy type theory [13, 14]

Thank you for your attention!

References I

- Anton Setzer. Proof theoretical strength of Martin-Löf Type Theory with W-type and one universe. PhD thesis, Universität München, 1993.
- [2] Anton Setzer. Well-ordering proofs for Martin-Löf type theory. Ann. Pure Appl. Logic, 92(2):113–159, 1998.
- [3] Michael Rathjen, Edward R. Griffor, and Erik Palmgren. Inaccessibility in constructive set theory and type theory. Ann. Pure Appl. Log., 94(1-3):181–200, 1998.
- [4] Anton Setzer. Extending Martin-Löf type theory by one Mahlo-universe. Arch. Math. Log., 39(3):155–181, 2000.
- [5] Anton Setzer. Universes in type theory part I – Inaccessibles and Mahlo. In A. Andretta, K. Kearnes, and D. Zambella, editors, *Logic Colloquium '04*, pages 123–156. Association of Symbolic Logic, Lecture Notes in Logic 29, Cambridge University Press, 2008.
- [6] Paul Mahlo.
 - Über lineare transfinite Mengen. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physische Klasse. 63:187–225. 1911.
- [7] Peter Aczel.

The type theoretic interpretation of constructive set theory. In Angus Macintyre, Leszek Pacholski, and Jeff Paris, editors, *Logic Colloquium* '77, volume 96 of *Studies in Logic and the Foundations of Mathematics*, pages 55–66. Elsevier, 1978.

[8] Peter Aczel.

The type theoretic interpretation of constructive set theory: Choice principles. In A. S. Troelstra and D. van Dalen, editors, *The L.E.J. Brouwer Centenary Symposium*, pages 1–40. North-Holland, 1982.

[9] Peter Aczel.

The type theoretic interpretation of constructive set theory: Inductive definitions. In R. B. Marcus, G. J. Dorn, and G. J. W. Dorn, editors, *Logic, Methodology, and Philosophy of Science VII*, pages 17–49. North-Holland, 1986.

[10] Michael Rathjen. Realizing Mahlo set theory in type theory. Arch. Math. Log., 42(1):89–101, 2003.

[11] Per Martin-Löf.

An intuitionistic theory of types.

In G. Sambin and Jan M. Smith, editors, *Twenty-five years of constructive type theory*, volume 36 of *Oxford Logic Guides*, pages 127–172. Clarendon Press, 1998.

[12] Erik Palmgren.

On universes in type theory.

In Giovanni Sambin and Jan M. Smith, editors, *Twenty Five Years of Constructive Type Theory*, Oxford Logic Guides, pages 191–204. Oxford University Press, 1998.

[13] Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu. Type-theoretic approaches to ordinals. *CoRR*, abs/2208.03844, 2022.

[14] Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu. Set-theoretic and type-theoretic ordinals coincide. *CoRR*, abs/2301.10696, 2023.

Definition (Higher-Order Universe Operator $u^{\mathbb{M}}$)

Let (z, v): Fam(O) and (x, y): Fam(V) be given. Define a function

$$h: \Pi_{(w:\operatorname{Fam}(\mathbf{V}))} \Big(((\mathbf{N}_1 + \mathbf{T}_{\mathbf{V}}x) + \mathbf{T}_{\mathbf{V}}z) + \Sigma_{(w':\mathbf{T}_{\mathbf{V}}z)} \mathbf{T}_{\mathbf{V}} \mathbf{p}_1(v \ w' \ w) \to \mathbf{V} \Big)$$

by

Pu

$$\begin{array}{ll} h \ w \ (\mathrm{i}(\mathrm{i}(\mathrm{i} \ x_{1}))) = x \ \text{with} \ x_{1} : \mathrm{N}_{1}, & (1) \\ h \ w \ (\mathrm{i}(\mathrm{i}(\mathrm{j} \ x_{2}))) = y \ x_{2} \ \text{with} \ x_{2} : \mathrm{T}_{\mathrm{V}} x, & (2) \\ h \ w \ (\mathrm{i}(\mathrm{j} \ y_{2}))) = \mathrm{p}_{1}(v \ y_{1} \ w) \ \text{with} \ y_{1} : \mathrm{T}_{\mathrm{V}} z, & (3) \\ h \ w \ (\mathrm{i}(\mathrm{j} \ y_{1})) = \mathrm{p}_{2}(v \ y_{1} \ w) \ \text{with} \ y_{1} : \mathrm{T}_{\mathrm{V}} z, & (3) \\ h \ w \ (\mathrm{j} \ (y_{1}, z_{1})) = \mathrm{p}_{2}(v \ y_{1} \ w) \ z_{1} \ \text{with} \ y_{1} : \mathrm{T}_{\mathrm{V}} z \ \text{and} \ z_{1} : \mathrm{T}_{\mathrm{V}} \mathrm{p}_{1}(v \ y_{1} \ w). & (4) \\ \end{array}$$

Put $f^{\mathbb{M}}[z, v, x, y] := \lambda w.(((\widehat{\mathrm{N}_{1\mathrm{V}}} \ +_{\mathrm{V}} x) \ +_{\mathrm{V}} z) \ +_{\mathrm{V}} \ \widehat{\Sigma}_{\mathrm{V}}(z, (w') \mathrm{p}_{1}(v \ w' \ w)), \ h \ w).$

We then define $u^{\mathbb{M}} : \mathrm{Fam}(\mathrm{O}) \to \mathrm{O}$ as

 $\mathbf{u}^{\mathbb{M}}(z,v)(x,y) := (\widehat{\mathbf{U}}_{f^{\mathbb{M}}[z,v,x,y]}, \widehat{\mathbf{T}}_{f^{\mathbb{M}}[z,v,x,y]})$ by reflecting $f^{\mathbb{M}}[z,v,x,y]$ in V.

Definition of $\mathcal{V}^{lpha}_{(a,f)}$

• The transfinite induction tcTI on the transitive closure α_{tc} of $\alpha: \mathbf{V}$ is definable:

$$\operatorname{tcTI}: \Pi_{(\alpha:\mathbf{V})}(\Pi_{(x:\operatorname{T}_{\mathbf{V}}(\operatorname{index}\,\alpha_{\operatorname{tc}}))}F (\operatorname{pred}\,\alpha_{\operatorname{tc}}\,x) \to F\,\alpha) \to \Pi_{(\alpha:\mathbf{V})}F\,\alpha$$

Definition of $\mathcal{V}^{lpha}_{(a,f)}$

• The transfinite induction tcTI on the transitive closure α_{tc} of $\alpha: {\bf V}$ is definable:

 $\operatorname{tcTI}: \Pi_{(\alpha:\mathbf{V})}(\Pi_{(x:\operatorname{T}_{\mathbf{V}}(\operatorname{index}\,\alpha_{\operatorname{tc}}))}F \;(\operatorname{pred}\,\alpha_{\operatorname{tc}}\;x) \to F\;\alpha) \to \Pi_{(\alpha:\mathbf{V})}F\;\alpha$

Definition (The Type $\mathcal{V}^{\alpha}_{(a,f)}$ of α -Iterative Sets)

 $\mathsf{Put}\;\Phi:\mathbf{V}\to O\;\mathsf{as}$

$$\Phi \alpha = \operatorname{tcTI} \left(\lambda \beta . \lambda x. \mathbf{u}^{\mathbb{M}} \left(\operatorname{index} \beta_{\mathrm{tc}}, x \right) \right) \alpha.$$

For any a : V and $f : T_V a \to V$, we define the α -th subuniverse $\mathcal{M}^{\alpha}_{(a,f)}$ of V and the type $\mathcal{V}^{\alpha}_{(a,f)}$ of α -th iterative sets on $\mathcal{M}^{\alpha}_{(a,f)}$ as follows:

$$\begin{split} \mathcal{M}^{\alpha}_{(a,f)} &:= \mathrm{T}_{\mathrm{V}}(\mathrm{p}_{1}(\Phi \; \alpha \; (a, f))) \\ \mathrm{T}^{\alpha}_{(a,f)} &:= \lambda x. \mathrm{T}_{\mathrm{V}}(\mathrm{p}_{2}(\Phi \; \alpha \; (a, f)) \; x) \\ \mathcal{V}^{\alpha}_{(a,f)} &:= \mathrm{W}_{(x:\mathcal{M}^{\alpha}_{(a,f)})} \mathrm{T}^{\alpha}_{(a,f)} x \end{split}$$