<u>Categories</u> as Semicategories with Identities

Joshua Chen Tom de Jong Nicolai Kraus Stiéphen Pradal

Functional Programming Lab University of Nottingham

TYPES 2023, 12-15 June

Goal?

Develop ∞ -category theory internally to HoTT.

Goal?

Develop ∞ -category theory internally to HoTT. Why?

- Describe the natural higher structure of the Universes internally.
- Develop a syntactic theory of higher categories.
- Related to the problem of HoTT eating itself.

• • • •

Goal?

Develop ∞ -category theory internally to HoTT. Why?

- Describe the natural higher structure of the Universes internally.
- Develop a syntactic theory of higher categories.
- Related to the problem of HoTT eating itself.

• • • •

Very difficult problem due to coherence issues.

How?

- $I e the composition structure \rightsquigarrow \infty semicategory.$
- Oefine identities.

How?

- $I e the composition structure \rightsquigarrow \infty semicategory.$
- 2 Define identities.

The type of identity-structure should be a proposition:

- An ∞ -semicategory should be an ∞ -category in only one way.
- Define ∞ -categories as a sub-type of ∞ -semicategories.

How?

- **1** Define the composition structure $\rightsquigarrow \infty$ -semicategory.
- 2 Define identities.

The type of identity-structure should be a proposition:

- An ∞ -semicategory should be an ∞ -category in only one way.
- Define ∞ -categories as a sub-type of ∞ -semicategories.

Generalisation:

In this talk we will focus on wild categories:

- No higher coherence conditions.
- No truncation conditions.

 \rightsquigarrow Wild categories generalise $\infty\text{-categories}.$

Outline

Wild semicategory

- 2 Naive Identities
- (Co)slice approach
 - 4 Harpaz's identities
 - 5 Idempotent Equivalences

6 Comparison

A wild semicategory is a tuple (Ob, hom, \circ , α) consisting of:

- Ob : *U*.
- hom : $Ob \rightarrow Ob \rightarrow U$.
- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ hom y z \rightarrow hom x y \rightarrow hom x z.

•
$$\alpha : \prod_{f,g,h} (h \circ g) \circ f = h \circ (g \circ f).$$

A wild semicategory is a tuple (Ob, hom, \circ , α) consisting of:

- Ob : *U*.
- hom : $Ob \rightarrow Ob \rightarrow U$.
- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ hom y z \rightarrow hom x y \rightarrow hom x z.

•
$$\alpha : \prod_{f,g,h} (h \circ g) \circ f = h \circ (g \circ f).$$

Notice the lack of an identity structure.

A wild semicategory is a tuple (Ob, hom, \circ , α) consisting of:

- Ob : *U*.
- hom : $Ob \rightarrow Ob \rightarrow U$.
- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ hom y z \rightarrow hom x y \rightarrow hom x z.

•
$$\alpha : \prod_{f,g,h} (h \circ g) \circ f = h \circ (g \circ f).$$

Notice the lack of an identity structure.

Goal of the talk:

Define an identity structure for a wild semicategory.

We can still define notions of equivalence and neutrality using the type theoretic equivalences and identity types:

We can still define notions of equivalence and neutrality using the type theoretic equivalences and identity types:

For
$$x, y : Ob$$
,
 $eqv(x, y) :\equiv \sum_{f:hom(x,y)} isequiv(f \circ _) \times isequiv(_ \circ f)$
 $neut(x) :\equiv \sum_{f:hom(x,x)} \prod_{y:Ob} (f \circ _) = id_{hom(y,x)} \times \prod_{y:Ob} (_ \circ f) = id_{hom(x,y)}$

Outline

1 Wild semicategory

2 Naive Identities

- (Co)slice approach
 - 4 Harpaz's identities
 - 5 Idempotent Equivalences

6 Comparison

For any object x : Ob we should get

- a particular morphism i : hom(x, x).
- left and right neutrality: $\lambda_f : i \circ f = f$ and $\rho_f : f \circ i = f$.

For any object x : Ob we should get

• a particular morphism i : hom(x, x).

• left and right neutrality: $\lambda_f : i \circ f = f$ and $\rho_f : f \circ i = f$.

Which in HoTT is written:

$$\prod_{x:\mathsf{Ob}} \sum_{i:\mathsf{hom}(x,x)} \prod_{y:\mathsf{Ob}} \left(\prod_{(f:\mathsf{hom}(x,y))} i \circ f = f \right) \times \left(\prod_{(f:\mathsf{hom}(x,y))} f \circ i = f \right)$$

For any object x : Ob we should get

• a particular morphism i : hom(x, x).

• left and right neutrality: $\lambda_f : i \circ f = f$ and $\rho_f : f \circ i = f$.

Which in HoTT is written:

 $\prod_{x:Ob} neut(x)$

For any object x : Ob we should get

• a particular morphism i : hom(x, x).

• left and right neutrality: $\lambda_f : i \circ f = f$ and $\rho_f : f \circ i = f$.

Which in HoTT is written:

 $\prod_{x:Ob} neut(x)$

This is not a proposition, we need the propositional truncation.

Naive Identities

$$\mathsf{Nald} :\equiv \prod_{x:\mathsf{Ob}} \| \mathsf{neut}(x) \|$$

Outline

1 Wild semicategory

2 Naive Identities

- (Co)slice approach
 - 4 Harpaz's identities
 - 5 Idempotent Equivalences

6 Comparison

Reminder

For an object x in a category C, the slice category C/x (resp. coslice category $x \setminus C$) consists of morphisms $a \to x$ (resp. $x \to a$) as objects and of commutative triangles as morphisms.

$$\begin{array}{ccc} a \underset{\searrow \ \swarrow}{\longrightarrow} b \\ x \end{array} \qquad \left(\begin{array}{ccc} \operatorname{resp.} & a \underset{\bigtriangledown \ \swarrow}{\longrightarrow} b \\ x \end{array} \right)$$

Reminder

For an object x in a category C, the slice category C/x (resp. coslice category $x \setminus C$) consists of morphisms $a \to x$ (resp. $x \to a$) as objects and of commutative triangles as morphisms.

$$\begin{array}{ccc} a \underset{\searrow \swarrow}{\longrightarrow} b \\ x \end{array} \qquad \qquad \left(\begin{array}{ccc} \operatorname{resp.} & a \underset{\bigtriangledown}{\longrightarrow} b \\ x \end{array} \right)$$

Remark

In the slice category C/x the identity $id_x : x \to x$ is terminal. Dually, id_x is initial in $x \setminus C$.

 \rightsquigarrow Use this fact to define the identity structure in a wild semicategory.

A straightforward way to express the structure is thus to ask for all slices to have a terminal object and all coslices to have an initial object:

A straightforward way to express the structure is thus to ask for all slices to have a terminal object and all coslices to have an initial object:

$$\prod_{x:Ob} hasTerm(C/x) \times hasInit(x \setminus C)$$

A straightforward way to express the structure is thus to ask for all slices to have a terminal object and all coslices to have an initial object:

$$\prod_{x:\text{Ob}} \sum_{t:\text{hom}(_,x)} \text{isequiv}(t \circ _) \times \sum_{i:\text{hom}(x,_)} \text{isequiv}(_\circ i)$$

A straightforward way to express the structure is thus to ask for all slices to have a terminal object and all coslices to have an initial object:

$$\prod_{x:\mathsf{Ob}} \sum_{t:\mathsf{hom}(_,x)} \mathsf{isequiv}(t \circ _) \times \sum_{i:\mathsf{hom}(x,_)} \mathsf{isequiv}(_\circ i)$$

Issues:

- *i* and *t* might not have same (co)domain.
- hom(x, x) might be empty.

 $\rightsquigarrow \mathbb{Z}$ as a semicategory is a counterexample.

A straightforward way to express the structure is thus to ask for all slices to have a terminal object and all coslices to have an initial object:

$$\prod_{x:\mathsf{Ob}} \sum_{t:\mathsf{hom}(_,x)} \mathsf{isequiv}(t \circ _) \times \sum_{i:\mathsf{hom}(x,_)} \mathsf{isequiv}(_\circ i)$$

Issues:

- *i* and *t* might not have same (co)domain.
- hom(x, x) might be empty.

 $\rightsquigarrow \mathbb{Z}$ as a semicategory is a counterexample.

Identity structure using (co)slice approach

SliceId :=
$$\prod_{x:Ob} \exists i:hom(x,x)$$
 isequiv $(i \circ _) \times isequiv(_ \circ i)$

11/19

A straightforward way to express the structure is thus to ask for all slices to have a terminal object and all coslices to have an initial object:

$$\prod_{x:\text{Ob}} \sum_{t:\text{hom}(_,x)} \text{isequiv}(t \circ _) \times \sum_{i:\text{hom}(x,_)} \text{isequiv}(_\circ i)$$

Issues:

- *i* and *t* might not have same (co)domain.
- hom(x, x) might be empty.

 $\rightsquigarrow \mathbb{Z}$ as a semicategory is a counterexample.

Identity structure using (co)slice approach

$$\mathsf{Sliceld} :\equiv \prod_{x:\mathsf{Ob}} \| \mathsf{eqv}(x, x) \|$$

Chen, de Jong, Kraus, Pradal

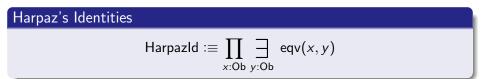
Outline

1 Wild semicategory

- 2 Naive Identities
- (Co)slice approach
- 4 Harpaz's identities
 - 5 Idempotent Equivalences

6 Comparison

Harpaz¹ gives a similar identity structure but weaker:



¹Y. Harpaz, Quasi-unital ∞ -categories (2015)

Harpaz¹ gives a similar identity structure but weaker:

Harpaz's Identities HarpazId := $\prod_{x:Ob} \exists eqv(x, y)$

Which can easily be made into an univalent identity structure:

Univalent Harpaz's Identities

uHarpazId :=
$$\prod_{x:Ob}$$
 isContr $\left(\sum_{y:Ob} eqv(x, y)\right)$

¹Y. Harpaz, Quasi-unital ∞ -categories (2015)

Outline

1 Wild semicategory

- 2 Naive Identities
- (Co)slice approach
 - 4 Harpaz's identities
- 5 Idempotent Equivalences

6 Comparison

So far, we always used propositional truncation.

Question

Can we avoid the use of propositional truncation?

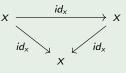
So far, we always used propositional truncation.

Question

Can we avoid the use of propositional truncation?

Remark

In C/x and $x \setminus C$ the only endomorphism of the identity is the identity itself:



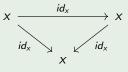
So far, we always used propositional truncation.

Question

Can we avoid the use of propositional truncation?

Remark

In C/x and $x \setminus C$ the only endomorphism of the identity is the identity itself:



For a morphism f, the property $f \circ f = f$ is called idempotency.

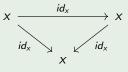
So far, we always used propositional truncation.

Question

Can we avoid the use of propositional truncation?

Remark

In C/x and $x \setminus C$ the only endomorphism of the identity is the identity itself:



For a morphism f, the property $f \circ f = f$ is called idempotency.

Hence, identity-like morphisms should have this property.

Chen, de Jong, Kraus, Pradal Categories as Semicategories with Identities

This kind of identity structure have been studied by Saavera² and Kock³. Nicolai showed in his paper⁴ that idempotency is actually enough:

²N. Saavera Rivano, Catégories Tannakiennes (1972)

³J. Kock, Elementary remarks on units in monoidal categories (2008)

 $^{^4}$ N. Kraus, Internal ∞ -categorical models of dependent type theory: Towards 2LTT eating HoTT (2021)

This kind of identity structure have been studied by Saavera² and Kock³. Nicolai showed in his paper⁴ that idempotency is actually enough:

Proposition (Kraus, 2021)

The type

$$\mathsf{IdemEqv} :\equiv \prod_{x:\mathsf{Ob}} \sum_{i:\mathsf{eqv}(x,x)} i \circ i = i$$

is a proposition.

²N. Saavera Rivano, Catégories Tannakiennes (1972)

³J. Kock, Elementary remarks on units in monoidal categories (2008)

 $^{^4}$ N. Kraus, Internal ∞ -categorical models of dependent type theory: Towards 2LTT eating HoTT (2021)

This kind of identity structure have been studied by Saavera² and Kock³. Nicolai showed in his paper⁴ that idempotency is actually enough:

Proposition (Kraus, 2021)

The type

$$\mathsf{IdemEqv} :\equiv \prod_{x:\mathsf{Ob}} \sum_{i:\mathsf{eqv}(x,x)} i \circ i = i$$

is a proposition.

Hence we can take it as identity structure on a wild semicategory.

- No truncation needed.
- We can project out the identity morphism and easily define left and right neutrality (λ and ρ).

²N. Saavera Rivano, Catégories Tannakiennes (1972)

³J. Kock, Elementary remarks on units in monoidal categories (2008)

 $^{^4}$ N. Kraus, Internal ∞ -categorical models of dependent type theory: Towards 2LTT eating HoTT (2021)

Outline

1 Wild semicategory

- 2 Naive Identities
- (Co)slice approach
 - 4 Harpaz's identities
 - 5 Idempotent Equivalences

Theorem

For a given wild semicategory, the four types Nald, IdemEqv, Harpazld, Sliceld are equivalent propositions.

Theorem

For a given wild semicategory, the four types Nald, IdemEqv, HarpazId, Sliceld are equivalent propositions.

Proof.

- The equivalence Nald ⇔ IdemEqv is straightforward.
- Harpazld \Rightarrow IdemEqv amounts to showing that for an equivalence $x \stackrel{f}{\rightarrow} y$ the morphisms $(f \circ _)^{-1}(f)$ is an idempotent equivalence.
- IdemEqv \Rightarrow SliceId is the projection.
- SliceId \Rightarrow HarpazId is trivial.

Conclusion

Overview

Id Structure	Avoids truncation	Captures non-univalent categories
Nald	×	\checkmark
SliceId	×	\checkmark
Harpazld	×	\checkmark
uHarpazId	\checkmark	×
IdemEqv	\checkmark	\checkmark

Conclusion

Overview

Id Structure	Avoids truncation	Captures non-univalent categories
Nald	×	✓
SliceId	×	 ✓
Harpazld	×	✓
uHarpazId	\checkmark	×
IdemEqv	\checkmark	\checkmark

Conjecture

Low levels are enough to produce all the higher coherences for the identity structure.

Conclusion

Overview

Id Structure	Avoids truncation	Captures non-univalent categories
Nald	×	✓
SliceId	×	 ✓
Harpazld	×	✓
uHarpazId	\checkmark	×
IdemEqv	\checkmark	\checkmark

Conjecture

Low levels are enough to produce all the higher coherences for the identity structure.

Formalisation in Agda:

See github.com/jaycech3n/semicategories-with-identities for details.