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Foreword

This volume contains the abstracts of the talks accepted for presentation at the 29th Interna-
tional Conference on Types for Proofs and Programs (TYPES 2023) held in Valencia, 12-15 June
2023.

The TYPES meetings are a forum to present new and ongoing work in all aspects of type
theory and its applications, especially in formalized and computer-assisted reasoning and computer
programming.

The meetings from 1990 to 2008 were annual workshops of a sequence of five EU-funded net-
working projects. Since 2009, TYPES has been run as an independent conference series.

In response to the call for contributions, 64 abstracts were submitted from authors in 19 different
countries. Two of the submissions were withdrawn by the authors. Accepted contributions were
distributed in sessions covering the different topics in the call:

• foundations of type theory and constructive mathematics;

• applications of type theory;

• dependently typed programming;

• industrial uses of type theory technology;

• meta-theoretic studies of type systems;

• proof assistants and proof technology;

• automation in computer-assisted reasoning;

• links between type theory and functional programming;

• formalizing mathematics using type theory

In addition, the symposium program included invited talks by four outstanding speakers: Andrej
Bauer (University of Ljubljana, Slovenia), Simona Ronchi della Rocca (Università di Torino, Italy),
Marie Kerjean (LIPN, CNRS, Université Sorbonne Paris Nord, France), and Yannick Foster (Inria
Nantes, France). This volume includes the abstracts of the invited talks.

Eduardo Hermo Reyes and Alicia Villanueva
Valencia, June 2023
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Verified Extraction from Coq to OCaml

Yannick Foster

Inria Nantes, France

Abstract

A central claim to fame of the Coq proof assistant is extraction to languages
like OCaml, centrally used in landmark projects such as CompCert. Ex-
traction was initially conceived and implemented by Pierre Letouzey, and is
still guiding design decisions of Coq’s type theory. While the core extraction
algorithm is verified on paper, central features like optimisations –of which
there are 10 the user can enable– only have empirical correctness guarantees.

In the scope of the MetaCoq project, which aims at placing Coq’s type
theory on a well-defined and fully formal foundation, I am working with
other members of the MetaCoq team on a re-implementation and verification
of all aspects of Coq’s extraction process to OCaml. The new extraction
process is based on a formal semantics of Coq as provided by MetaCoq
and a formal semantics of the intermediate language of the OCaml compiler
derived from the Malfunction project.

In my talk, I plan on discussing the current state of this verification, its
goals, possible extensions, and design decisions along the way, a discussion of
the trusted computing and theory bases (and in particular ideas for reducing
them), arising problems with Coq and the surrounding infrastructure, and
the impact on other projects. I will conclude with thoughts on how other
proof assistants can learn andbenefit from the lessons we have learned.
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The differentiation monad
Marie Kerjean (invited speaker)1 and Jean-Simon Pacaud Lemay2

1 CNRS, LIPN
Université Sorbonne Paris Nord

kerjean@lipn.fr
2 School of Mathematical and Physical Sciences

Macquarie University
Email: js.lemay@mq.edu.au

This talk is based on joint work with Jean-Simon Pacaud Lemay [KL].

The continuation monad is a very basic programming structure, at the heart of several other
ones. Its unit very basically embeds a value into its continuation:

v 7→ λk.kv : A⇒ (A⇒ B)⇒ B

What happens when we enforce the linearity of certain arrows above ? Linearity here is
meant in the Linear Logic [Gir87] sense: linear implication⊸ are interpreted as linear maps in
appropriate algebraic models, or corresponds to proofs that use exactly once their hypothesis.

v 7→ λk.D[k]v : A⊸ (A⇒ B)⊸ B

While the rightmost⊸ is linear by construction, making leftmost⊸ linear means that the
continuation k is now a linear map: we differentiated it.

This operation in fact already existed as an inference rule in Differential Linear Logic (DiLL)
[ER06]. Differential Linear Logic is an extremely symmetrical extension of Linear Logic. When
the second allows to handle the fact that linear proofs are in particular non-linear, the second
allows to do the converse transformation, going from non-linear proofs to linear proofs, that
is differentiating them. It operates on the type !A := (A ⇒ ⊥) ⊸ ⊥ of distributions with
compact support.

d̄ := v 7→ (f 7→ D0(f)) : A⊸ !A

The connective ! is the fundamental introduction of Linear Logic, interpreted as the space of
distributions in models of classical Linear Logic. It is historically modeled as a co-monad (!, d, p)
in its denotational models. The co-unit d corresponds to the dereliction of functions as non-
linear functions, and p allows non-linear function to compose. The fundamental call-by-name
translation of Intuitionistic Logic into Linear Logic is the exact translation of the symmetry at
the heart of distribution theory, saying that functions act on value exactly as distributions act
on function.

A⇒ B ≡ !A⊸ B

In this talk we will explain how to make ! a monad, thanks to differentiation and the convolu-
tional exponential.

For ! to be a monad with d̄ as a unit, we are looking for a multiplication law p̄ : !!A⊸ !A ≡
!A ⇒ !A. The monads law will tell us in particular that d̄; p̄ = id, which means that when we
consider p̄ as a non-linear map its differential at 0 must be the identity. To make p̄ coherent
with Differential Linear Logic, we must have it as a monoid morphism on !, meaning that p̄
applied to a convolution of distributions results in the multiplication of the actions of p̄. A

3



morphism whose differential at 0 is the identity, and who transforms sums into multiplication
is nothing but the convolutional exponential:

p̄ := ϕ 7→
∑

n

1

n!
ϕ∗

n

: !A⇒ !A ≡ !!A⊸ A

We will dive into the properties of the differentiation monad (!, d̄, p̄). In particular, we will
show that while it is known that the interaction d̄ and p is the exact translation of the chain
rule in analysis, the interaction between p̄ and d is exactly a symmetric "co-chain" rule. Most
importantly, we will show that the monad law !d̄; p̄ = id is verified only if we place ourselve into
a quantitative model of lambda-calculus.

The quantitative point of view on programming languages consists in measuring through
syntax, types or models their usage in time or resources. This has in particular led to refined
results for the λ-calculus and innovations in probabilistic programming. In denotational seman-
tics, it typically consists of interpreting programs by power series, whose coefficients represent
the quantitative information one would like to retrieve. In an analytic context, power series are
in particular functions which equal their Taylor series at 0:

f(v) =
∑

n∈N

1

n!
D

(n)
0 (f)(v).

As (D0(_)(v))∗
n

= D
(n)
0 (_)(v), the above equation is the exact translation of !d̄; p̄ = id on

every function f : A⇒ ⊥ and vector v : A.
However, finding concrete interpretation of the monad (!, d̄, p̄) is not so easy. Indeed, p and p̄

do not interact very well: for ϕ : !A, p̄(ϕ) as a sum of distributions might converge on functions
f g, but not on their composition f ◦ g. The solution comes from independent studies on the
convolutional exponential in functional analysis [GHOR00]. We will show that this gives us a
graded monad, reconciling Differential Linear Logic with Graded Linear Logics.

References
[ER06] T. Ehrhard and L. Regnier. Differential interaction nets. Theoretical Computer Science,

364(2), 2006.
[GHOR00] R. Gannoun, R. Hachaichi, H. Ouerdiane, and A. Rezgui. Un théorème de dualité entre

espaces de fonctions holomorphes à croissance exponentielle. Journal of Functional Analysis,
171(1), 2000.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1), 1987.
[KL] Marie Kerjean and Jean-Simon Pacaud Lemay. Taylor Expansion as a Monad in Models of

Dill. In LICS 2023.
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Intersection and Simple types

Simona Ronchi della Rocca

Università di Torino, Italy

Abstract

When, in the seventies of the last century, Coppo and Dezani designed in-
tersection types, their main motivation was to extend the typability power
of simple types, adding them an intersection connective, enjoying associativ-
ity, commutativity and idempotency, so denoting set formation. In fact, the
simple types system can be seen as a restriction of the intersection type sys-
tem where all sets are singletons. Quite early intersection types turned out
to be useful in characterizing qualitative properties of λ-calculus, like solv-
ability and strong normalization, and in describing models of λ-calculus in
various settings. A variant of intersection types, where the intersection is no
more idempotent, has been recently used to explore quantitative properties
of programming language, like the length of the normalisation procedure.
It is natural to ask if there is a quantitative version of the simple type
system, or more precisely a decidable restriction of non-idempotent inter-
section system with the same typability power of simple types. Since the
lack of idempotency, now the intersection corresponds to multiset formation,
so (extending the previous reasoning) the natural answer is to restrict the
multiset formation to copies of the same type. But this answer is false, the
so obtained system is decidable, but it has less typability power than simple
types. We prove that the desired system is obtained by restricting the mul-
tiset formation to equivalent types, where the equivalence is an extension of
the identity, modulo the cardinality of multisets.
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On Isomorphism Invariance and Isomorphism
Reflection in Type Theory

Andrej Bauer
University of Ljubljana

Isomorphism Invariance, also called the Principle of Isomorphism and the
Principle of Structuralism, is the idea that isomorphic mathematical objects
share the same structure and relevant properties, or that whatever can reason-
ably be done with an object can also be done with an isomorphic copy:

Isomorphism Invariance: “If A ∼= B and Φ(A) then Φ(B).”

Without any limitation on Φ, we may take Φ(X) to be A = X and obtain:

Isomorphism Reflection: “If A ∼= B then A = B.”

Conversely, Isomorphism Reflection implies Isomorphism Invariance by Leibniz’s
Identity of Indiscernibles. Depending on how we interpret ∼= and =, these
principles might be plainly false, uninspiringly true, or a foundational tenet:

1. In set theory, if ∼= is existence of a bijection, the principles are false.

2. In set theory, if ∼= is isomorphism of sets qua ∈-structures, both principles
are true because Isomorphism Reflection is just the Extensionality axiom.

3. In type theory, if = is propositional equality and ∼= is equivalence of types,
Isomorphism Reflection is (a consequence of) the Univalence axiom.

While Isomorphism Invariance is widely used in informal practice, with ∼= under-
stood as existence of structure-preserving isomorphism, Isomorphism Reflection
seems quite unreasonable because it implies bizarre statements, e.g., that there
is just one set of size one. Any formal justification of the former must therefore
address the tension with the latter principle.

In this talk I will review what is known about the formal treatment of the
principles, recall the cardinal model of type theory by Théo Winterhalter and
myself which shows that Isomorphism reflection is consistent when = is taken
as judgemental equality, and discuss the possibility of having other models vali-
dating judgemental Isomorphism reflection that might be compatible with non-
classical reasoning principles. I shall also touch on the possibility of a restricted
form of Isomorphism reflection that would provide a satisfactory formal defini-
tion of “canonical isomorphism”.
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Decidable Type-Checking for
Bidirectional Martin-Löf Type Theory

Meven Lennon-Bertrand and Neel Krishnaswami
University of Cambridge, UK

Abstract

In this work, we describe a presentation of dependent type systems rooted in bidi-
rectional ideas, carefully separating at the syntax level between inferring and checking
terms. This leads to a system which requires exactly the annotations needed to decide
type-checking. Moreover, it readily embeds the two most usual ways to handle typing in
dependent type systems, either by restricting to a certain subclass of terms that do not
need annotations (as done in Agda), or by demanding certain annotations to be provided
(as done in Coq), providing an elegant unifying framework.

1 Dependent type-checking is more subtle than you think
While a large body of work has been devoted to showing decidability of conversion for vari-
ous complex dependent type systems, decidability of typing has attracted comparatively little
interest. However, it is a more subtle question than on can at first think.

Type-checking for dependent type systems is, in general, undecidable [3]. The main culprits
are (β-)redexes: when considering f u, a type-checker typically infers a type Πx : A.B for the
function f , then checks u against A. However, when the function f is an abstraction λx.t, there
is nowhere this A can be obtained from! Trying to infer A from u runs into a similar issue.

There are two standard approaches to get out of this difficulty. The first one is to restrict
the terms fed to the type-checker to a subset for which type-checking becomes decidable again.
The kernel of the Agda proof assistant, for instance, only manipulates terms in normal forms
[9], for which type-checking is generally decidable whenever conversion is [1, 5].

The second approach is to decorate terms with type annotations, to ensure one can always
infer a type for any typable term. For instance, in Coq or Lean, the kernel only deals with
annotated abstractions λx : A.t, which contain exactly the information we were missing in the
redex earlier. Again, this leads to decidable type-checking when conversion is decidable [6].

In practice, these limitations are mitigated at the user level using unification, allowing for
a syntax which is more flexible than the kernel’s. Still both approaches still have significant
drawbacks. Because Agda can only represent normal forms, it has to eagerly normalize terms,
and cannot type-check intermediate steps of its reduction machine. Because Coq can only
represent terms that infer, it can be quite inefficient, as annotations create a lot of redundancy.
Finally, elaboration based on unification is inherently incomplete. This makes them less pre-
dictable, forcing users to get an intuition as to which unification problems their tool can solve.
Designing a system which has a complete, and thus predictable, type-checking, and has less of
the aforementioned shortcomings, thus seems like a desirable goal.

2 A bidirectional analysis
To better understand the issue, we can turn to bidirectional typing [4], an analysis of type-
checking algorithms which emphasizes the difference between two modes, between which most

8



Decidability of Type-Checking for Bidirectional MLTT M. Lennon-Bertrand and N. Krishnaswami

such algorithms alternate: checking–where the type is known–and inference–where it is to be
found. In this view, the issue with our redex is that in an application f u we want the function
f to infer a type, but an abstraction λx.t can only be reasonably checked. Both solutions
sketched in Section 1 are quite radical: Agda forces f to be a neutral term which always infers,
while Coq demands that all terms infer a type. What if, instead, we simply demanded that f
inferred a type, whatever way it achieves this? What if we separated, already in the syntax,
between inferring terms and checking terms to be able to express this demand?

This idea has already appeared in the literature [5, 8]. Both works, however, use it only
to relax Agda-style type-checking, by adding an annotation t :: A to a language otherwise
completely devoid of them, allowing writing a β-redex as (λx.t :: Πx : A.B) u. But this is
heavier than Coq-style annotations, because in general only the domain annotation is really
needed. So, let us simply throw these in as well! Altogether, the functional fragment of such a
language looks as follows, divided in the two, mutually defined checking and inferring terms:

c ::= i | λx.c i ::= c :: A | x | i c | λx : A.i | Πx : A.B | □k

with both typed and untyped abstractions, types (in the inferring fragment, as we luckily can
infer their type), and i , the converse of annotation that forgets that its argument is inferring.
While not presented here for lack of space, this presentation easily extends to virtually any
feature present in modern dependent type systems, such as inductive types or negative records.

Because we design the language to respect the structure of bidirectional algorithms, these
work perfectly, and typing is decidable for systems in this fashion as soon as conversion is.
Moreover, both earlier approaches can be carved out as subsystems: the first, by using neither
t :: A nor annotated abstraction; the second, by restricting to the inferring fragment, using no
checking term but i . We thus get two proofs of decidability for the price of one.

3 Substitution, reduction and conversion
Of course, this system would not be any good without a well-behaved conversion. Before coming
to it, however, we must beware of substitution. The naïve reduction of (λx : A.t) u to t[x := u]
is incorrect, as it does not preserve modes: the variable x infers, but u merely checks, and so
replacing one by the other is incorrect. Rather, the correct β-redex is instead t[x := u :: A], as
it is mode-preserving. If we care about preservation of typability during a small step reduction
chain, typically to be able to read back terms to users, then this is the correct substitution rule.

The second point of interest are of course annotations. Here we can take inspiration from
the transport of observational equality [2, 10] or the casts of gradual typing [7]: annotations
reduce when both the type and terms are canonical, and propagate down: (λx.t) :: (Πx : A.B) →
λx : A.(t :: B). Combining this with the previous rule for β-redex, we recover the earlier rule of
McBride [8]. Conversely, we can erase useless annotations: λx : A.t → λx. t . Finally, we also
want some form of extensionality for annotations: t :: A should be convertible to t.1 Just as
for casts on reflexivity in the latest version of observational equality [11], however, we do not
want to see this as a reduction rule, but rather as an equation only needed on neutral terms.
In the end, we get a system close to that of Pujet and Tabareau [11], and we expect being able
to adapt their technique to show decidability of our conversion.

If, however, we are only interested in evaluation to decide conversion, we know that normal
forms do not contain annotations. Why, then, bother with maintaining those? Instead, we can
erase them in a normalization by evaluation approach, similar to e.g. Gratzer et al. [5]. This
speeds up conversion-checking, at the cost of losing a well-typed reduction sequence.

1Note that it does not make sense to compare simply t :: A and t, as they do not have the same mode.
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Building an elaborator using extensible constraints

Bohdan Liesnikov1, Jesper Cockx1

TU Delft, Delft, Netherlands

Dependently-typed languages proved to be very useful for statically enforcing properties of pro-
grams and for enabling type-driven development. However their implementations have been
studied to a smaller extent than their theoretical properties. Theoretical models of these lan-
guages do not consider the plethora of features that exist in a bigger language like Agda, leading
to issues in the implementation of the unifier and the elaborator. We present work-in-progress
on a new design for elaboration of dependently-typed languages based on the idea of an open
datatype for constraints to tackle these issues. This allows for a more compact base elaborator
implementation while enabling extensions to the type system. We do not require modifications
to the core of type-checker, therefore preserving safety of the language.

Introduction. The usual design of a compiler for a dependently-typed language consist of
four main parts: a parser, an elaborator, a core type-checker, and a back-end. Some languages
omit some parts, such as Agda which lacks a full core type-checker. The elaborator can further
be divided into two parts: traversal of the terms with collection of the constraints and solving
of the constraints [8]. These can be found in all major dependently-typed languages like Idris,
Coq, Lean, and Agda, though they are at times interleaved. Agda perhaps pushes the idea
of constraints the furthest and uses a family of 17 kinds of constraints. We will focus on it
specifically below since the problems are most prominent there.

Problems with unifiers. The most common constraint type is equality, which is typically
solved by a unifier. In order to provide the most powerful inference to users, compiler writers of-
ten extend the unifier to make it more powerful, which leads to complex and intricate code. This
code is also heavily used throughout the compiler: either as direct functions leqType when type-
checking terms, compareType when type-checking applications, or as raised constraints ValueCmp
and SortCmp from equalTerm while checking applications or definitions, ValueCmpOnFace from
equalTermOnFace again while checking applications. This makes it sensitive towards changes
and hard to maintain and debug.

An example from Agda’s conversion checker is the compareAs function which provides type-
directed unification and yet the vast majority of it are special cases for metavariables. This
function calls the compareTerm' function which then calls the compareAtom function. Each of the
above functions implements part of the “business logic” of the conversion checker with the total
line count above 400 lines. But each of them contains a lot of code dealing with bookkeeping
related to metavariables and constraints: they have to throw and catch exceptions, driving
the control flow of the unification, compute blocking tags that determine when a postponed
constraint is retried, and deal with cases where either or both of the sides equation or its type
are either metavariables or the reduction is blocked on one. As a result this code is unintuitive
and full of intricacies as indicated by multiple comments in the source code.

Zooming in on the compareAtom function, the actual logic can be expressed in about 20 lines of
simplified code. This is precisely what we would like the compiler developer to write, not to
worry about the dance around the constraint system.
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The functions described above are specific to Agda but in other major languages we can find
similar problems with unifiers being large modules that are hard to understand. The sizes of
modules with unifiers are as follows: Idris (1.5kloc), Lean (1.8kloc), Coq (1.8kloc). For Haskell,
which is not a dependently-typed language yet but does have a constraints system [7], this
number is at 2kloc.

How do we solve this? While Agda relies on constraints heavily, the design at large does
not put them in the centre of the picture and instead frames them as a gadget. To give a
concrete example, functions noConstraints or dontAssignMetas rely on specific behaviour of the
constraint solver system and are used throughout the codebase. abortIfBlocked, reduce and
catchConstraint/patternViolation force the programmer to make a choice between letting the
constraint system handle blockers or doing it manually. These things are known to be brittle
and pose an increased mental overhead when writing a type-checker.

Our idea for a new design is to shift focus more towards the constraints themselves: First we
give a stable API for raising constraints that can be called by the type-checker, essentially
creating an “ask” to be fulfilled by the solvers. This is not dissimilar to the idea of mapping
object-language unification variables to host-language ones as done by Guidi, Coen, and Tassi
[5], view of the “asks” as a general effect [3, ch. 4.4] or communication between actors [1].
Second, to make the language more modular we make constraints an extensible data type in
the style of Swierstra [9] and give an API to define new solvers with the ability to specify what
kinds of constraints they can solve. Our prototype is implemented in Haskell as is available at
github.com/liesnikov/extensible-elaborator.

For example, to solve unification problems we need to define a constraint that models them:
data EqualityC e = EqualityCC Term Term Type

On the solver side we need to define a suite of unification solvers that handle different cases of
the problem. Let us take a look at the simplest example – checking syntactic equality.
syntacticH :: ( MonadElab m, EqualityC :<: c)=> Constraint c -> m Bool
syntacticS :: ( MonadElab m, EqualityC :<: c)=> Constraint c -> m ()
syntactic = Plugin { handler =syntacticH , solver =syntacticS ,

pre =[...] , suc =[...] , tag=" syntactic "}

We first define the class of constraints that will be handled by the solver by providing a “handler”
– a function that decides whether a given solver has to fire. In this case – checking that the
constraint given is indeed an EqualityC and that the two terms given to it are syntactically
equal. The solver in this case simply marks the constraint as solved, since it only fires once
it has been cleared to do so by a handler. We separate the handler from the solver to allow
for cheaper decision procedures and more expensive, effectful solvers. Finally, we register the
solver by declaring it using a plugin interface specifying solvers that precede and succeed it.

Open constraint datatype. Refactoring the unifier into smaller solvers results in a compact
elaborator for a simple language. Moreover, making the constraint datatype open and allowing
users to register new solvers allows us to extend the language without affecting the core. For
example, to add implicit arguments to the language it is enough to extend the parser, add one
case to the elaborator to add a new meta for every implicit and register a solver. For a simple
implicit every such metavariable will be instantiated by the unifier. Once we have implicits
as a case in the elaborator we believe that the design can accommodate type classes [6] and
tactic arguments [10, ch. 3.17.1] with just additional solvers and parsing rules. We hope to also
implement coercive subtyping (akin to [2]) and, perhaps, row types [4].
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Gaëtan Gilbert, Pierre-Marie Pédrot, Matthieu Sozeau, and Nicolas Tabareau
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Since their inception, proof assistants based on dependent type theory have featured some
way to quantify over types. Leveraging dependent products, the most common way to do so is
to introduce a type of types, known as a universe. Care has to be taken, as paradoxes lurk in
the dark. Martin-Löf famously introduced in his seminal type theory MLTT a universe U with
the typing rule U : U , only for Girard to show that this system was inconsistent. The standard
solution is to introduce a hierarchy of universes (Ui)i∈N and mandate that Ui : Ui+1.

While trivial from the point of view of the typing rules, this additional index is a major source
of non-modularity. One has indeed to pick a level in advance for every universe instance they
write, leading to potential conflicts later on. Historically, the first answer to this problem was
the introduction of floating universes, i.e. replacing N with a well-founded graph and checking
constraints on-the-fly. This solution is simple and works for most practical uses, but is too
limited for in-depth universe manipulation as it still forces a global assignment of levels.

Properly solving the issue requires a bit more expressivity, provided by universe polymor-
phism. Several variants of such a mechanism exist, which can roughly be put on a spectrum
of internalization, from McBride’s crude but effective stratification [3], to Agda where universe
levels are inhabitants of a bona fide type [6]. On the midpoint sit the type theories of Coq [5] and
Lean [2] which only allow an external, prenex form of universe polymorphism. These systems
are a sweet spot as they are conservative while restoring the lost modularity. So, is everything
perfect in the best of all universes?

Unfortunately for the user, but fortunately for us, the answer is no. Universe polymorphism
is optimal only when there is a single hierarchy of universes. In proof assistants based on CIC,
like Coq or Lean, the universe structure follows the PTS tradition, insofar as it has not one
single hierarchy, but actually two. Namely, while there is on the one hand the Typei hierarchy
that corresponds to Ui from MLTT, there is also a universe of propositions Prop1. The Prop

universe is a hodgepodge of several features, mixing impredicativity, compatibility with proof-
irrelevance and erasability. In order to make this sound, inductive types living in Prop cannot
be eliminated in general into Type. This is a source of non-monotonicity, and as a result Prop
cannot be treated as a level in universe polymorphism. Not only this forces code duplication
between Type and Prop, but this has also annoying consequences in unification where some
sorts must be explicitly annotated.

The situation in Coq has recently gotten even worse with the introduction of a third kind
of universe, SProp, which classifies definitionally irrelevant types. Thus we have to triplicate
all our definitions, but that is the least of our problems. Conversion now depends on the
knowledge that a type lives in SProp, which in the Coq case prevents the cumulativity relation
SProp ⊆ Type. This introduces even more code duplication compared to Prop. Worse, this
completely breaks unification. Up to Coq 8.17, unification picked the sort of a type eagerly to
be Type. This worked with a few quirks for Prop ⊆ Type, but this prevented conversion from
relying on irrelevance without explicit SProp annotations. The kernel also had to perform a
hackish “repair” of ill-annotated terms produced by elaboration.

One could claim that the existence of three hierarchies is an annoyance. We claim that in
reality one should desire many more hierarchies. The literature abounds in examples, e.g. the

1We voluntarily ignore the case of impredicative Set.
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opposition between strict and fibrant types of 2LTT [1] and the one between pure and effectful
types [4]. A decent proof assistant should thus make it possible to write modular code not only
w.r.t. universe levels, but also w.r.t. universe hierarchies! As a solution, we propose a novel
mechanism of sort polymorphism complementary to the universe polymorphism mechanism.

In a nutshell, it introduces a new algebra of sorts s, which in the case of Coq is

s ::= α | Type | Prop | SProp

where α ranges over sort variables. Sorts are then factorized as a single term constructor Sortsi
where s is a sort and i is a level. The usual sorts are then defined as e.g. Typei := Sort

Type
i and

Prop := Sort
Prop
0 . Just like levels, we now allow prenex quantifications over sort variables.

For this to work properly, we need the typing rules to be stable by sort instantiation. For
the negative fragment, we expect the sort of a sort to be Type and the sort of a product to be
the sort of its codomain, as per the rules below.

Sortsi : Typei+1

⊢ A : Sorts
′
i x : A ⊢ B : Sortsj

⊢ Π(x : A). B : Sortsi∨j

This allows transparently handling impredicative universes, setting e.g. SortPropi ≡ Sort
Prop
j

for all levels i, j. More generally, these rules seems to be valid for every instance from the
literature.

We are currently working on porting this system from the negative fragment to the more
complex case of inductive types. The avowed goal is to emulate the infamous template poly-
morphism feature of Coq, which is a primitive form of level polymorphism with a bit of sort
polymorphism blended in. Notably, this allows Coq to type A×B : Prop whenever A,B : Prop.
We envision a system leveraging the difference between squashed types, with identity elimina-
tions for sort variables and explicit elimination rules for ground sorts, and unsquashed types,
allowing all eliminations.

This mechanism has been partially implemented in the unification algorithm of Coq 8.18.
The kernel does not feature a way to quantify over sorts at the level of definitions yet, but the
elaboration algorithm now manipulates algebraic sorts. In particular, relevance annotations are
parameterized by sort variables, solving the aforementioned issues with SProp. As a byproduct
longstanding issues due to the eager choice of Type vs. Prop were solved.
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Lax-Idempotent 2-Monads, Degrees of Relatedness,

and Multilevel Type Theory
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Parametricity and Degrees of Relatedness Fourty years ago, Reynolds [Rey83] formulated
his model of relational parametricity for (predicative [Lei91, Rey84]) System F. This was later re-
organized as a model of System Fω and dependent type theory in reflexive graphs [Atk12, AGJ14],
which evolved further into a cubical model [BCM15, NVD17] in order to support parametricity
w.r.t. proof-relevant relations, as well as internal iterated parametricity.

Most accounts of parametricity for dependent type theory do not satisfy Reynolds’ identity
extension lemma – a.k.a. discreteness – for large types [AGJ14, BCM15, CH20]. The lemma and
the discreteness condition express that homogeneous (i.e. non-dependent) graph edges are reflexive
(i.e. constant), so that the edge relation in general can be understood as heterogeneous equality.
The fact that identity extension can be satisfied for small types [AGJ14] actually has little to do
with size; the reason is simply that discrete types are closed under all the usual type formers, except
for the universe, which can be excluded by requiring smallness. This coupling between universe
level (a device for safeguarding predicativity) and discreteness breaks down upon introducing HITs
[Uni13, ch. 6] with edge constructors, or a discrete truncation, or certain modal types. Therefore,
it is better to introduce an orthogonal stratification. In the type system RelDTT for Degrees of
Relatedness [ND18], universes are annotated by a level as well as a depth p ≥ −1 indicating the
relational complexity of the types they classify. The idea is that a type of depth p is equipped
with p+ 1 proof-relevant reflexive relations (as well as equality and ‘true’)

x = y ⇒ x ⌢0 y ⇒ x ⌢1 y ⇒ . . . ⇒ x ⌢p y ⇒ ⊤,

where discrete types must satisfy the identity extension lemma w.r.t. ⌢0, making ⌢0 a notion of
heterogeneous equality. Data types such as Bool and Nat have depth 0, whereas the (discrete) uni-
verse of depth p types has depth p+1. RelDTT can in fact be seen as an instance of multimode type
theory (MTT) [GKNB21] instantiated on a specific mode theory DoR [Nuy20, §9.3]. The objects
of the 2-category DoR are the depths p ≥ −2, which serve as the modes of the theory. Modalities
µ : p → q are specified by monotone functions − · µ : {0 ≤ . . . ≤ q} → {= ≤ 0 ≤ . . . ≤ p ≤ ⊤},
denoted as ⟨0 · µ, . . . , q · µ⟩.123 The modal type ⟨µ | A⟩ is then conceptually the same type as A,
but the ith relation of ⟨µ | A⟩ is the (i · µ)th relation of A. Modal functions are (at least semanti-
cally) functions whose domain is a modal type, so that e : x ⌢i·µ y is sent to f(e) : f(x)⌢i f(y).
The identity function is then continuous (con : p → p with i · con = i), while polymorphic func-
tions may be parametric (par : p + 1 → p with i · par = i + 1) or ad hoc (hoc : q → p with
i · hoc = (=)). Algebras depend on their structure via the structural modality str : p → p + 1
such that par ◦ str = con.

Depth p types were originally modelled in presheaves over the category DCubep of depth p
cubes, which is the free cartesian-category-with-terminal-object-⊤ over the diagram

⊤ **

44 L0M // . . . // LpM.

This specialized model proved soundness of RelDTT, but the fact that it was constructed specif-
ically for this occasion was at odds with the claim that RelDTT and its semantics explain the
existence and behaviour of many modalities found implicitly or explicitly throughout the literature.

1The domain becomes empty if q = −1. By convention, the depth −2 is a freely added strict initial object.
2By a combinatorial argument, DoR is isomorphic to the semisimplex 2-category.
3Actually, RelDTT internalizes only the morphisms in DoR that have a left adjoint in DoR (and does not use

depth −2), which for the original model was an unnecessary restriction inspired by the perceived need for a left
division operation respecting context extension. For the general model below, we need to apply the same restriction
so as to ensure the existence of a left adjoint operation on contexts for every internal modality.
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Lax-Idempotent 2-Monads, Degrees of Relatedness, and Multilevel Type Theory Andreas Nuyts

Multilevel Type Theory Two-level type theories (2LTT) [Voe13, ACK16, ACKS17] are type
systems built on top of another type system (called the inner system; in any treatment that I
am aware of this is immediately specialized to HoTT) by internalizing aspects of its metatheory
(such as extensional equality in the HoTT application) which can then be reasoned about in the
outer system. Annenkov et al. give a general model for 2LTT: if the inner system is modelled in a
category C (potentially its category of syntactic contexts and substitutions) then the outer system
can be modelled in the presheaf category Psh(C), which contains C via the Yoneda-embedding. We
can of course iterate this idea, which we call multilevel type theory: viewing the outer system as
the inner one, we can add a further system modelled in Psh(Psh(C)). This construction exhibits
properties reminiscent of RelDTT. Given two objects c, d ∈ Obj(C), we can either first embed
them in Psh(C) and then take the coproduct, yielding yc ⊎ yd, or the other way around, yielding
y(c⊎ d), and we have yc⊎yd→ y(c⊎ d). We can view objects of Psh(C) as objects of C equipped
with a further, weakest, relation, and y can be viewed as a codiscrete embedding. Therefore, we
propose to alternatively model depth p types of RelDTT in Pshp+2(C) for any category C.

Lax-Idempotent 2-Monads It is well-known that Psh : Cat→ Cat sends a category to its free
cocompletion; it is then unsurprising that Psh has the structure of a (weak) 2-monad. In fact,
Psh is a prototypical instance of the more general concept of a (weak) lax-idempotent 2-monad :

Definition 1. A (strict) 2-monad (M, η, µ) on a (strict) 2-category C is lax-idempotent if it
satisfies one of many equivalent properties [nLa23b, nLa23c, Koc95] including:

� The equality id = µ ◦Mη is the unit of an adjunction Mη ⊣ µ,
� The equality µ ◦ ηM = id is the co-unit of an adjunction µ ⊣ ηM.

Recall that any functor F : C → D gives rise to a triple of adjoint functors F! ⊣ F ∗ ⊣ F∗ [nLa23a].
Here, PshF := F! : Psh(C) → Psh(D) is taken to be the (pseudo)functorial action of Psh. The
Yoneda-embedding η := y : Id → Psh is (pseudo)natural and serves as the unit of the 2-monad.
It turns out that the adjoint triple obtained for F = y : C → Psh(C) is exactly Psh η ⊣ µ ⊣ ηPsh,
so that Psh is indeed a (weak) lax-idempotent 2-monad.

Iterated applications of M generate long chains of adjoint morphisms, e.g.

MMMη ⊣MMµ ⊣MMηM ⊣MµM ⊣MηMM ⊣ µMM ⊣ ηMMM : M3C →M4C.
We find similar chains in DoR,4 listing the modalities that insert or remove 1 relation into/from
the stack, which clearly generate all the morphisms of DoR:

⟨=, 0, 1⟩ ⊣ ⟨1, 2⟩ ⊣ ⟨0, 0, 1⟩ ⊣ ⟨0, 2⟩ ⊣ ⟨0, 1, 1⟩ ⊣ ⟨0, 1⟩ ⊣ ⟨0, 1,⊤⟩ : 1→ 2.

Proposition 2. The following defines is a lax-idempotent monad on the mode theory DoR:

M p = p+ 1,

i ·M(µ : p→ q) =





(=) if p = −2,
else p+ 1 if i = q + 1,
else p+ 1 if i · µ = ⊤,
else i · µ,

η : p→ p+ 1
η = ⟨0, . . . , p,⊤⟩

µ : p+ 1→ p
µ = ⟨0, . . . , p⟩

Theorem 3 (WIP). The 2-category DoR is freely generated by the object −2 and the existence
of a strict lax-idempotent 2-monad (M, η, µ).

Sketch of proof. By analysis of string diagram representations of 1-morphisms [nLa23d, nLa23e].
The relations 0, . . . , p correspond to regions enclosed between two strings, while = and ⊤ are
the outer regions. A coherence property can be proven for commuting 2-cells around µ, thus
establishing uniqueness of 2-cells.

This makes RelDTT the internal language of a strict lax-idempotent 2-monad M : Cat → Cat
iteratively applied to a single category, assuming that M produces CwFs [Dyb96] and that all
generated right adjoints are CwF morphisms (which is the case for Psh [Nuy20, thm. 6.4.1]).
Modulo strictification, we can instantiate M with Psh, as desired.

4In fact, picking C = −2 and M as in proposition 2, the chains for M specialize to the ones on DoR.
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In this work we investigate how much type theories are able to prove about the natural numbers.
We show that strong versions of type theory (both predicative and impredicative) prove exactly
the same arithmetical formulas as Higher-order Heyting Arithmetic (HAH). As a consequence,
we see that these versions are equiconsistent with HAH. Along the way, we investigate the
different interpretations of higher-order logic in type theory, and to what extent dependent
type theories can be seen as extensions of higher-order logic.

Main Theorem. We have the following result:

λC+ and ML1+ are conservative over HAH.

Here λC+ is a version of the Calculus of Inductive Constructions [CH88, BC13, PM15], while
ML1+ is Martin-Löf type theory [ML84] with a single universe, extended with propositional
truncation, resizing, and quotient types. We will explain these theories and sketch the proofs.

HAH [TvD88, Bus98] uses the same axioms for the natural numbers as Peano Arithmetic (PA),
however it is formulated in intuitionistic higher-order logic instead of classical first-order logic.
In higher-order logic we can quantify over powersets of the domain: we write xn if x is an element
of the n-th powerset, in our case Pn(N). This is governed by the axiom schemes:

∀Xn+1 ∀Y n+1 (∀zn (z ∈ X ↔ z ∈ Y )→ X = Y ), (extensionality)
∃Xn+1 ∀zn (z ∈ X ↔ P [z]). (comprehension)

Powersets are ubiquitous in mathematical practice, however their interpretation in type theory
is not always straightforward.

Impredicative type theory has a canonical interpretation of higher-order logic, including
powersets. In an impredicative version of type theory there exists a special universe Prop that
is closed under products over all types. So, if we have an arbitrary type A, and for x : A a
type B[x] : Prop, then we always have Π(x : A)B[x] : Prop. We think of the types in Prop as
propositions, and write ∀(x : A)B[x] for Π(x : A)B[x] in the case that B[x] : Prop. The other
logical connectives can also be defined:

⊥ := ∀(C : Prop)C, A ∨B := ∀(C : Prop) ((A→ C)→ ((B → C)→ C)),

> := ∀(C : Prop) (C → C), A ∧B := ∀(C : Prop) ((A→ (B → C))→ C),

P A := A→ Prop, ∃(x : A)B[x] := ∀(C : Prop) ((∀(x : A) (B[x]→ C))→ C).

The impredicativity allows us to quantify over propositions while defining a proposition.

Besides logic, an impredicative universe also allows us to define weak versions of inductive and
coinductive data types like the natural numbers and streams, however we cannot prove that
they satisfy the full (co)induction principles [Geu01]. The reason for this limitation is that an
impredicative universe is able to fit two roles: it is consistent that the types in this universe have
at most one distinct term [Smi88], but also that it has strong (co)inductive types [Hyl88].
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λC+ makes use of this fact by postulating two impredicative universes Prop, Set : Type with
different properties. To satisfy extensionality we add the following axioms for Prop:

fun-ext : ∀(f, f ′ : Π(x : A)B [x]) ((∀(x : A) (f x = f ′ x))→ (f = f ′)),

prop-ext : ∀(P, P ′ : Prop) ((P → P ′)→ (P ′ → P )→ (P = P ′)).

In contrast, we assume that Set has a wide array of (co)inductive types: 0,1,2,N,Σ,Π,W,M,
and quotient types. This gives a strong type theory with both versions of impredicativity.

Proof Sketch. (λC+ is conservative over HAH) It is straightforward to see that λC+ proves
the axioms and satisfies the rules of HAH. To show that it does not prove more HAH-formulas,
we give an interpretation of λC+ in HAH and show that the composition of interpretations
HAH ↪→ λC+→ HAH is the identity up to logical equivalence.

Our interpretation of λC+ in HAH can be seen as a model for λC+ within HAH. We interpret
the propositions, sets, and types of λC+ as subsingletons, partial equivalence relations (PERs),
and assemblies, respectively. This is based on existing techniques [Hyl88, Reu99], but modified
in two fundamental ways: (a) we restrict the model to get an interpretation in HAH instead
of Zermelo-Fraenkel set theory, and (b) we extend the model from the minimalistic Calculus of
Constructions to our extensive Calculus of Inductive Constructions λC+.

Predicative type theory gives a more complicated story. This is because predicative theories,
without impredicative universes like Prop, do not allow the same canonical interpretation of
higher-order logic. Instead, multiple different interpretations exist in the literature, which
actually affect the formulas that are provable in our type theory. First off, there are two ways
to interpret logical connectives (with or without propositional truncation) [Uni13]:

(A ∨B)◦ := ‖A◦ +B◦‖, (A ∨B)∗ := A∗ +B∗,

(A ∧B)◦ := A◦ ×B◦, (A ∧B)∗ := A∗ ×B∗,

(∃(x ∈ A)B[x])◦ := ‖Σ(x : A)B[x]◦‖, (∃(x ∈ A)B[x])∗ := Σ(x : A)B[x]∗,

(∀(x ∈ A)B[x])◦ := Π(x : A)B[x]◦, (∀(x ∈ A)B[x])∗ := Π(x : A)B[x]∗.

The second option proves the axiom of choice, which is not provable in HAH [CR12]. However,
if we only consider first-order formulas, then we can still get conservativity results [Ott22]. To
get conservativity for higher-order formulas as well, we focus on the first interpretation.

The more difficult problem is powersets: if we take P A := A → Type0, then we cannot prove
extensionality and comprehension. Extensionality is not true because, given X,Y : A→ Type0
such that for z : A we have functions X z → Y z and Y z → X z, we do not necessarily have
X = Y . Consider for example X := λz 1 and Y := λz 2. To recover extensionality, we can work
with quotient types: take Pq A := (A → Type0)/≈, where (X ≈ Y ) := Π(z : A) (X z ↔ Y z).
Alternatively, we could also deal with typeoids: types with an associated equivalence relation.
For comprehension, the problem is that formulas cannot quantify over themselves: if a type
contains a universe Typei then it ends up in a higher universe Typei+1. To counter this, we add
the axiom of propositional resizing, allowing us to find equivalent types in lower universes.

ML1+ has a predicative universe Type0 : Type1, with 0,1,2,N,Σ,Π,W,M, ‖ · ‖, and quotient
types. We have an axiom for propositional resizing and interpret higher-order logic using
propositional truncation and quotient types.

Proof Sketch. (ML1+ is conservative over HAH) We first embed ML1+ in λC+ by sending
Type0 to Set and Type1 to Type. Then we show that the interpretation of logic in ML1+ is
equivalent to the impredicative interpretation of logic in λC+.
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Enriched categories have found numerous applications, including effects in programming
languages [EMS14, PP01], abstract homotopy theory [GJ09], and in higher category theory
[Lur09]. In this abstract, we discuss an ongoing formalization of enriched categories in univalent
foundations. More specifically, we define the notion of univalence for enriched categories, and we
prove that the bicategory of univalent enriched category is univalent. This gives us a structure
identity principle for enriched categories. The definitions and theorems in this abstract are
formalized in the Coq proof assistant [Tea22] using the UniMath library [VAG+] and building
upon [AKS15, WMA22], and all our definitions and theorems are available in UniMath1.

1 Univalent Enriched Categories

In the remainder of this abstract, we fix a monoidal category V, and we denote its unit by 1
and the tensor by ⊗. Usually, the definition of an enriched category is a slight modification of
the notion of category: the homs are required to be objects of V instead of sets. However, we
take a different approach, which is based on the notion of enrichment. Since every enriched
category C has an underlying category C0, there is a 2-functor (−)0 from the 2-category VCat
of categories enriched over V to the 2-category Cat of categories [Kel82]. The idea is that an
enrichment of C is an object of the fiber of (−)0 along C.

Definition 1. A V-enrichment E of a category C consists of

• a function E(−,−) : C→ C→ V;

• for all x : C a morphism Id : 1→ E(x, x) in V;

• for all x, y, z : C a morphism Comp : E(y, z)⊗ E(x, y)→ E(y, z) in V;

• functions FromArr : C(x, y) → V(1,E(x, y)) and ToArr : V(1,E(x, y)) → C(x, y) for all
x, y : C

such that the usual axioms for enriched categories are satisfied and such that FromArr and
ToArr are inverses of each other. A category with a V-enrichment is a pair of a category C
together with a V-enrichment of C.

Note that enrichments of categories have been considered in other work as well [MU22], al-
though they used yet another definition. The reason why we choose to define enriched categories
this way, is because using enrichments, we can define a displayed bicategory VUnivCatdisp over
UnivCat whose total bicategory is the bicategory VUnivCat of enriched categories (Definition 4).
This way the proof of the univalence for the bicategory of enriched categories becomes simpler,
because we can reuse the proof that the bicategory of categories is univalent [AFM+21]. Note
that our notion of categories with a V-enrichment is actually equivalent to the usual notion of
enriched categories.

1https://github.com/UniMath/UniMath
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Proposition 2. The type of categories with a V-enrichment is equivalent to the type of V-
enriched categories defined using the definition given by Kelly [Kel82].

Next we define univalent enriched categories. With our definition of enrichments, we say that
a univalent enriched category is a univalent category together with an enrichment. Equivalently,
we also phrase univalence for enriched categories as defined in [Kel82]: such an enriched category
C would be univalent if the underlying category C0 is univalent.

Definition 3. A univalent V-enriched category is a pair of a univalent category C together
with a V-enrichment of C.

2 The Bicategory of Univalent Enriched Categories

Next we construct the bicategory of univalent enriched categories, and we prove that this
bicategory is univalent. To define this bicategory, we use displayed bicategories [AFM+21],
and thus we need to define enrichments for functors and natural transformations. Concretely,
we need to define V-enrichments for functors F : C1 → C2 from E1 to E2, where E1 and E2

are V-enrichments of C1 and C2 respectively. We also need to define V-naturality for natural
transformations. The definitions of these notions are in a similar style as Definition 1, and for
the precise definitions, we refer the reader to the formalization.

Definition 4. We define the displayed bicategory VUnivCatdisp over UnivCat as follows:

• The displayed objects over a category C are V-enrichments of C;

• The displayed 1-cells over a functor F : C1 → C2 from E1 to E2 are V-enrichments of F;

• The displayed 2-cells over a natural transformation τ are proofs that τ is V-natural.

The total bicategory of VUnivCatdisp is the bicategory of univalent enriched categories, and we
denote it by VUnivCat.

The proof that the data in Definition 4 actually forms a displayed bicategory, is similar
to the construction of the bicategory of enriched categories in set-theoretic foundations. We
conclude this abstract by proving that VUnivCat is univalent.

Lemma 5. If V is univalent, then the displayed bicategory VUnivCatdisp is univalent.

Theorem 6. If V is univalent, then the bicategory VUnivCat is univalent.

The methods used to prove Theorem 6 are similar to the methods used for proofs of univa-
lence in [AFM+21]. Concretely, this theorem says that two enriched categories are equal if we
have an enriched equivalence between them. As such, we obtain a structure identity principle
for enriched categories.

There are numerous way to extend the work in this abstract. One particular way, is by
instantiating the formal theory of monads to enriched categories [Str72, vdW22]. Concretely,
this means that one constructs the enriched Eilenberg-Moore and Kleisli category for an enriched
monad. The usual theorems about monads and adjunctions for enriched categories would then
follow from the formal theory developed by Street [Str72], and these theorems are useful for
formalizing results about the semantics of the extended effect calculus [EMS14].

2
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Normal Form Bisimulations by Value
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The study of program equivalences for λ-calculi is an important topic where semantical and
operational techniques meet. Properties of program equivalences are notoriously difficult to
prove. Even the equivalence of two terms might be challenging to establish, if the notion of
equivalence is Morris’ contextual equivalence [Mor68], or some variant still quantifying over a
class of contexts, such as Abramsky’s applicative bisimilarity [Abr90], as opposed to bisimulations
on finitely branching transition systems [DGHL09]. Another difficulty is the fact that properties
of program equivalences are quite brittle, as they are not preserved by extensions of the calculus
under study, nor by restrictions, and not even by changing the evaluation strategy in the calculus.

This paper stems from the observation that another natural program equivalence, Sangiorgi’s
normal form bisimilarity [San94] (shortened to nf-bisimilarity), behaves differently in call-by-
name (shortened to CbN) and call-by-value (CbV), already in the untyped effect-free weak case.
We then study various CbV nf-bisimilarities and, to better understand them, we relate them to
Ehrhard’s CbV relational model [Ehr12] that we present via non-idempotent intersection types.

Normal Form Bisimilarity. Normal form bisimulations are program equivalences that,
instead of comparing terms externally, depending on how they behave in contexts, compare them
internally, by looking at the structure of their (infinitary) normal forms. A distinctive feature of
nf-bisimulations is that they directly manipulate open terms, to the point that Sangiorgi rather
used to call them open bisimulations in his seminal paper [San94].

It is known that Sangiorgi’s CbN nf-bisimilarity is not fully abstract for contextual equivalence,
being sound but not complete. The failure of full abstraction is compensated by the fact that
CbN nf-bisimilarity is easier to establish than applicative bisimilarity, because of the absence of
quantification over arguments. Typically, it is easy to show that different fix-points combinators—
which are the paradigmatic terms with infinitary normal forms—are nf-bisimilar, while it is
hard to show that they are applicative bisimilar.

In CbV, however, it is not so obvious that contextual equivalence ≃vC should be the standard
of reference, at least in the untyped, effect-free setting, because therein ≃vC is cost-insensitive: it
equates terms such as (λx.yxx)t and ytt, for any t, also for terms t that are not values. This is
against the very idea of CbV, of avoiding duplicating t before having evaluated it. In richer CbV
settings with state or probability, contexts discriminate more, and those terms are separated,
but in the pure case they are not.

Meaninglessness. Idle programs which diverge in an unproductive way are sometimes called
meaningless. A key fact is that all meaningless terms are contextually equivalent to Ω = δδ
where δ = (λx.xx), the paradigmatic meaningless term.

In CbV, meaningless terms should not be defined by simply changing the evaluation strategy
in their CbN definition (that is, Barendregt’s unsolvability [Bar84]), as this approach yields
a class of terms which are not all contextually equivalent in CbV [AG22]. The weak variant
of CbV unsolvable terms, called inscrutable terms (or non-potentially-valuable by Paolini and
Ronchi della Rocca [PRDR99, RP04]) provides the right semantic foundation in CbV.

It turns out, unfortunately, that inscrutable terms still lack some expected properties in
Plotkin’s CbV calculus, namely they do not all diverge. Such an issue entails that any nf-
bisimulation based on Plotkin’s calculus fails at being complete, because it does not equate
meaningless terms. A possible way out is to switch to an extension of Plotkin’s CbV calculus
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where CbV inscrutable terms do all diverge while preserving the same notion of contextual
equivalence, and design therein a nf-bisimilarity. One such setting is the value substitution calculus
(shortened to VSC), a CbV λ-calculus due to Accattoli and Paolini [AP12], related to linear
logic proof nets [Acc15] and where inscrutability has been extensively studied [AP12, AG22].

A CbV Nf-Bisimilarity ≃net Equating Meaningless Terms The motivation behind this
work is the development of a CbV nf-bisimilarity that equates CbV inscrutable terms, aiming at
refining known CbV program equivalences and matching Sangiorgi’s CbN nf-bisimilarity at the
same time. By using the VSC, we do build a CbV nf-bisimilarity matching Sangiorgi’s in capturing
inscrutable terms. The obtained net bisimilarity ≃net and the proof of its compatibility (that is,
stability by context closure)—which is the challenging property to prove for bisimilarities—are
the main contributions of this paper. Compatibility implies soundness with respect to contextual
equivalence, and it is proved adapting Lassen’s variant for nf-bisimilarities of Howe’s method
[Las99]. As it is often the case for nf-bisimilarities, ours is sound but not complete, and it is
cost-sensitive.

The crafting of net bisimilarity is based on a sophisticated analysis of CbV and the VSC. In
particular, its definition compares normal forms modulo some equivalences induced by linear logic
proof nets, whence the name net bisimilarity. We actually go further, introducing a parametric
nf-bisimilarity, where such extra equivalences can be turned off and on at will—because some
fail in extensions of CbV with effects—thus defining a family of CbV nf-bisimilarity, all proved
compatible via a single abstract proof.

Our result is however more a new beginning than the end of the story: net bisimilarity,
indeed, is not a refinement of the state of the art for CbV nf-bisimilarity, namely Lassen’s enf
bisimilarity ≃enf [Las05]. In fact, the two are incomparable. An important point is that Lassen’s
program equivalence follows Moggi’s extension of the CbV calculi [Mog88, Mog89]: in particular,
it verifies the left identity law It ≡lid t, where I = λx.x. If t is a value, the law is included in
βv-reduction, but Moggi extends it to every term t. Moggi’s left identity law, however, is not a
rule of the VSC and net bisimilarity does not verify it.

Type Equivalence ≃type = Meaningless and Left Identity Normal form bisimulations
are operationally-based equivalences. Denotational semantics also yield equational theories—by
equating terms with the same interpretation—which are program equivalences. Such model-based
equivalences differ from nf-bisimulations. On the one hand, they are easily proved compatible,
while nf-bisimulations are not. On the other hand, as contextual equivalence, they are not
directly usable, because the interpretation of a term usually contains infinitely many elements.

Here we investigate the equational theory of Ehrhard’s CbV relational model [Ehr12]. We call
it type equivalence because the model is presented as a multi type system (a variant of intersection
types). Such a model was already extensively studied in connection with the VSC by Accattoli
and Guerrieri [AG18, AGL21, AG22]. Its equational theory does not have a presentation via
nf-bisimulations, nor any other characterization, but it is nonetheless possible to study it via the
multi type system. It turns out that type equivalence, similarly to nf-bisimilarities, is compatible
and sound, but not complete for contextual equivalence, as it is cost-sensitive.

We prove that Lassen’s enf bisimilarity and net bisimilarity are included in type equivalence.
Therefore, the two bisimilarities are joinable. Since both are sound, they are obviously joinable
in a cost-insensitive setting, as they are both included in contextual equivalence. Our results
show that they are also joinable in a cost-sensitive program equivalence, thus suggesting that a
nf-bisimilarity joining the two might be possible. Crafting it, and especially proving that it is
compatible and that it includes type equivalence, is left to future work.
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The modal unification of the calling paradigms call-by-name (cbn) and call-by-value (cbv)
carried out in [2, 3] follows these general lines: (1) The embeddings of intuitionistic logic into
modal logic S4 attributed to Girard and Gödel [7] are recast as maps compiling respectively
the ordinary, cbn λ-calculus [1] and Plotkin’s cbv λ-calculus [6] into a modal target, which
is a simple extension of the λ-calculus with an S4 modality, denoted 2. (2) One can define
later instantiations of the S4 modality, in the form of interpretations of the modal target
into diverse other calculi, like the linear λ-calculus [5] or call-by-push-value [4], recovering
by composition known embeddings of cbn and cbv λ-calculus, and confirming the thesis that
calculi encompassing call-by-name and call-by-value do so because they already embed our
modal target.

In this abstract we report on-going work on the instantiation into call-by-push-value, which
was done using the modal target λ>< introduced in [3].

In the λ><-calculus, the type form 2A is permitted, if A itself is not a modal type. This is
implemented by splitting types A into boxed types B and unboxed types C:

A ::= B |C B ::= 2C C ::= X |B ⊃ A

In contexts Γ, variables will be assigned boxed types only. Accordingly, implications have the
form B ⊃ A. The splitting of the types almost induces a splitting of the terms, that is, a
classification of each term form as either boxed or unboxed, in the sense of being necessarily
typed with a boxed or unboxed type. For instance, the constructor box(M) corresponding to the
introduction of 2 is boxed, while ε(x) is unboxed (variables and the eliminator of the modality
will always occur together in this compound form). Only the application constructor as to be
split into a boxed and a unboxed variants. Summing up, terms T are either boxed terms P or
unboxed terms M , given by:

M,N ::= ε(x) |λx.T |MQ P,Q ::= box(M) |QP

The second application form QP has type B, if P : 2(B′ ⊃ B) and Q : B′; so P is the function
and Q is the argument. Hence, the head of a unboxed term M = V Q1 · · ·Qm is a value (here
ε(x) or λx.T ), while the head of a boxed term P = Qm · · ·Q1box(M) is a box. The remaining
typing rules are easily guessed (and given in [3]). To conclude the definition of λ><, we state its
two reduction rules:

(β<) (λx.M)box(N)→ [N/ε(x)]M (β>) box(N)box(λx.P )→ [N/ε(x)]P

System λ>< was designed from intuitionistic S4, through several stages of simplification [2, 3],
aiming for a system containing as tightly as possible the images of both modal embeddings. A
measure of tightness is that both cbn and cbv λ-calculus can be recognized inside λ><: the first
as the subsystem of unboxed terms, where QP and β> are forbidden, and boxed terms are only
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used as the arguments Q in application MQ, and so can be dispensed with; the second as the
subsystem of boxed terms, where MQ and β< are forbidden, and unboxed terms are only used
as values in box(V ). Girard’s (resp. Gödel’s) embedding is thus the isomorphism between cbn
(resp. cbv) λ-calculus and its copy inside λ><.

The translation of λ>< into call-by-push-value uses the fragment λcbpv of the latter, containing
implication, F and U as the only type operations. The types of λcbpv are thus computation
types A, which can be B ⊃ A, FB, or an atom X, or value types B, with unique form UA.
The terms M and values V of λcbpv are given by:

M,N ::= λx.M |MV | returnV | forceV |M tox.N V,W ::= x | thunkM

Regarding typing, terms (resp. values) receive computation (resp. value) types, under contexts
Γ assigning value types to variables. Constructors thunkM and forceV correspond to the
introduction and elimination of U . Constructors returnV and M tox.N correspond to the
introduction and elimination of F . Each type former ⊃, F and U has its own β-rule.

Roughly speaking, the translation ( )▽ : λ>< → λcbpv implements the instantiation 2 = FU .
More precisely, there is a translation of types so that A▽ is a computation type given by
X▽ = X, (B ⊃ A)▽ = B� ⊃ A▽, and B▽ = FB�. Here B� = (2C)� is the value type UC▽.
Hence, (2C)▽ = FUC▽. There is a translation of terms so that a unboxed term M : C (resp. a
boxed term P : B) under Γ is translated to a term M▽ : C▽ (resp. P▽ : B▽) under Γ�. The
two forms of applications are translated thus:

(MQ)▽ = Q▽ tox.M▽x (QP )▽ = P▽ to f.Q▽ tox.(force f)x

In fact, some optimizations are possible in this definition, if P or Q have the form box(M). We
adopt such an optimization right away in the first equation, separating the case (Mbox(N))▽ =
M▽(thunkN▽).

Stabilizing the definition like that, the instantiation ( )▽ obtains a simulation of reduction
in λ>< by reduction in λcbpv. Moreover, recall λ>< includes the cbn and cbv λ-calculi. Hence, if
we calculate the composition of the inclusions in λ>< – that is, the modal embeddings – with
the instantiation, then we obtain translations from the the cbn and cbv λ-calculi into λcbpv. It
turns out that such translations are Levy’s translations given in [4] (modulo one η-expansion
in the cbn translation of variables). Levy’s cbn and cbv translations can thus be factored into
one of the modal embeddings and a common factor which is the instantation 2 = FU . We may
conclude that λcbpv subsumes cbn and cbv because it interprets the call-by-box calculus λ><.

Like in our study of the modal embeddings, we are carefully studying the image of the
instantiation map. This will give, simultaneously: a decomposition of λ>< induced by the
decomposition 2 = FU , and an interesting fragment of λcbpv. A simple example of this si-
multaneous benefit is the following grammar of types, which defines the type structure in the
referred image:

A ::= FB |C B ::= UC C ::= X |B ⊃ A
On the one hand, it refines the type structure of λ>< given above, with the modality split into
two different classes of types. On the other hand, the class of such types A is a subset of the
computation types of λcbpv, because here we cannot form the value type UFB. The splitting of
types A into FB and C almost induces a classification of the (computation) terms of λcbpv into
the returning computation terms P , which have type FB, and the resulting computation terms,
which have type C. Again, only the application constructor is ambiguous and has to be given
in two forms, to enforce fully such classification. The resulting syntax is both a refinement of
the term syntax of λ>< and the call-by-thunk fragment of λcbpv.
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[3] J. Esṕırito Santo, L. Pinto, T. Uustalu, Plotkin’s call-by-value λ-calculus as a modal calculus,
Journal of Logical and Algebraic Methods in Programming 127 (2022) 100775.

[4] P. B. Levy, Call-by-push-value: Decomposing call-by-value and call-by-name, High. Order Symb.
Comput. 19 (4) (2006) 377–414.

[5] J. Maraist, M. Odersky, D. N. Turner, P. Wadler, Call-by-name, call-by-value, call-by-need and
the linear lambda calculus, Theoretical Compututer Sci. 228 (1–2) (1999) 175–210.

[6] G. Plotkin, Call-by-name, call-by-value and the λ-calculus, Theoretical Compututer Science 1
(1975) 125–159.

[7] A. Troelstra, H. Schwichtenberg, Basic Proof Theory, 2nd Edition, Vol. 43 of Cambridge Tracts
in Theoretical Computer Science, Cambridge Univ. Press, 2000.

35



Modal Types for Asynchronous FRP

Patrick Bahr and Rasmus Ejlers Møgelberg

IT University of Copenhagen, Denmark
(bahr,mogel@itu.dk)

Reactive programs are programs that engage in an ongoing dialogue with their environment,
often without ever terminating. Examples include GUIs, servers and control software. These
programs are often written in imperative languages using a combination of complex features
such as shared state and call-backs, which makes them error-prone and hard to read and reason
about.

The idea of Functional Reactive Programming (FRP) [5] is to represent reactive programs
as functions on a type of signals in a functional programming language, allowing programs to
be written in a modular way on a high level of abstraction. However, care must be taken when
designing languages for FRP, to ensure that all programs can be implemented in an efficient way.
In particular, the type system should ensure that all programs are causal (current output does
not depend on future input) and free of implicit space- and time leaks (causing the program to
eventually run out of space or slow down). Often one would also like programs to be productive,
in the sense that each step of the program terminates. A naive encoding of signals as streams,
i.e., coinductive solutions to SigA ∼= A× SigA will cause causality to fail.

Modal FRP

Recently, a number of languages have been proposed using modal types to ensure these proper-
ties [7, 6, 10, 11, 9, 2, 1, 8]. The most important of these modalities is © encoding a notion of
time step. Defining the signal type to satisfy SigA ∼= A×©(SigA) stating that the tail is only
available in the next time step, type checking can ensure that all programs are causal. Often
this is combined with a variant of Nakano’s fixed point operator [12] of type (©A→ A)→ A al-
lowing programmers to write recursive programs while maintaining productivity. Other modal
operators include 2 used for stable data (data that can be kept across time steps without causing
space leaks), and 3 (eventually), which can often be encoded. These suggest a Curry-Howard
correspondence [6, 8, 3] with Linear Temporal Logic [13].

In these languages © is read as a delay on a global clock. For some applications, however,
the idea of a global clock is unnatural, and may lead to leaky abstractions as well as inefficient
implementations. Consider, for example, a GUI application reacting to three signals of mouse
coordinates, mouse clicks, and keyboard input, respectively. The global clock will have to tick
whenever one of these signal is updated, even if other signals are not. One way to encode this is
to work with signals of type Maybe, but this is not only unnatural, but also inefficient in many
of the languages mentioned above, because the application will have to check for input on each
time step.

Async RaTT

In this talk we will present a new language called Async RaTT for asynchronous modal FRP.
Typing judgements are relative to a context ∆ of channels for asynchronous input signals. For
example, ∆ may state that there are input channels keyPressed : Nat, mouseCoord : Nat× Nat,
and mouseButton : 1 + 1 (for left and right mousebutton). We refer to a subset of the input
channels as a clock and the arrival of an input on one of the channels in a clock θ as a tick
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on the clock θ. The central new component of Async RaTT is a modality ∃© for asynchronous
delays. A value of type ∃©A is a pair whose first component is a clock θ, and whose second
component is a computation which can be evaluated to a value of type A at the time of the
first tick on the clock θ. Using ∃©, one can define a type of asynchronous signals that satisfies
SigA ∼= A× ∃©(SigA). Note that this means that the clock associated with the tail of a signal
may change from one step of execution to another. This is important because it allows for
dynamic changes to the dataflow graph through operators such as

switch : SigA→ ∃©(SigA)→ SigA

which returns a signal that behaves as its first input until a new signal arrives on the second
input.

To avoid space leaks, Async RaTT does not allow arbitrary data to be stored from one time
step to the next. One consequence of this is that ∃© is not a applicative functor: In the type
∃©(A → B) → ∃©A → ∃©B, the delayed function and input may arrive at different times, and
so one would need to be stored. Instead, Async RaTT offers a synchronisation primitive

sync : ∃©A1 → ∃©A2 → ∃©((A1 × ∃©A2) + (A2 × ∃©A1) + (A1 ×A2))

whose result is delayed on the union of the clocks for the input. Among other things, sync can
be used to encode switch.

Aside from ∃©, Async RaTT uses two other modal type operators: 2 (for stable data) and
∀©. The latter of these is used to classify data that is available at any time in the future, but
not now. It is primarily used in the type of the fixed point operator

fix : 2( ∀©A→ A)→ A

The input to fix needs to be a stable function (hence the use of 2) because it can be called at
any time in the future. The use of ∀© ensures that the recursive call happens in the next time
step, thus ensuring termination of each step of computation.

Operational semantics and results

A complete Async RaTT program is a term of type SigB1 × · · · × SigBn in some context of
input channels ∆. The operational semantics maps a complete program to a machine that
takes asynchronous input from ∆ and produces output on the n channels of types B1, . . . , Bn
respectively. The machine associates, at each step of execution, a clock to each output signal,
corresponding to the first component of an element of the type ∃©(SigBi) of the tail of the i’th
output signal. Using this, the machine can, upon the arrival of an input, decide which output
signals need to be updated as a consequence of the input arriving.

The machine uses a store for delayed computations and input data. At the end of each step
of execution, all delayed computations that could potentially be run in the current step are
deleted from the store, and all old input data is also deleted. We show safety of this aggresive
garbage collection technique, which can be understood as the machine being free of implicit
space leaks [9]. We also show causality and productivity.

The talk

The talk will focus on presenting the intuitions for the modal types as well as their typing rules
and a few programming examples. If time permits, we will also sketch the machine and the
logical relation used for proving the operational results mentioned. The results presented here
are detailed in our recent manuscript [4].
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Logical Frameworks (LFs) are languages for defining logical theories. If in one hand they can
be used for studying theories in a unified setting, they are also of practical interest. Indeed, an
implementation of a LF yields a typechecker for its theories, which can be used for prototyping
with new proposals, or also rechecking proofs coming from proof assistants (as done in the
Dedukti [2] project). LFs can be classified according to two categories:

Pure LFs come with a fixed definitional equality, so theories are specified by only constants.
Because most type theories feature a non-trivial definitional equality, it is impossible to define
such theories directly, so instead one encodes its judgment derivations [9]. This approach has the
advantage that, because typechecking is kept decidable and terms of the framework represent
judgment derivations of the encoded theory, implementations of such frameworks can be used
for formalizing metatheory, such as in Twelf [10, 7]. On the other hand, such an encoding
does not yield a typechecker for terms of the type theory, but for its judgment derivations.

Equational LFs [8, 16] allow for an extensible definitional equality, enabling the direct defini-
tion of type theories instead of their judgments derivations. But because of the need of deciding
arbitrary equalities, they are in general not designed to be implemented.

If the generality of the equalities is a challenge for implementations, a way out of this problem
is to restrict the accepted ones. This is the approach adopted by the logical frameworkDedukti
[2, 3], which only supports computational theories — that is, whose definitional equality is
generated only by rewrite rules. The advantage of this design choice is that rewriting makes it
easy to decide the definitional equality in a theory-agnostic way. Experiences on typechecking
big libraries of proofs in Dedukti confirm that this can be done efficiently [5, 11]. However,
Dedukti encodings are polluted by bureaucratic terms which need to be quontiented out in the
adequacy theorem [6]. For instance, the framework terms λ (x.@ t x), λ (@ t) and λ ((z.z) (@ t))
(ignoring type annotations) all represent the same object term λx.tx, but only λ (x.@ t x) would
be in the image of the translation function. Moreover, only theories with fully annotated syntax
are accepted — for instance, one has ⟨a, b⟩A,x.B instead of ⟨a, b⟩. This does not only impact
performance, user experience and complicate adequacy proofs, but also means that the goal of
representing the usual syntax of theories is unfortunately not fully achieved.

1st contribution In this work we present CompLF. Like Dedukti, it allows to define type
theories directly and typecheck terms in them, and unlike Twelf it is not aimed at mechanizing
their metatheory. Like Dedukti, our framework only supports computational theories, which
makes equality checking easy. However, in CompLF bureaucratic terms such as λ (@ t) and
λ ((z.z) (@ t)) are eliminated by restricting valid terms to (meta-level) β-normal η-long forms
(as in [10]), leading to a faithful representation of syntax. Finally, a central feature is that it
supports non-annotated syntaxes, allowing to define theories with their true syntax.

Example A dependently-typed λ-calculus (without universes) can be defined by the theory
TλΠ := (ΣλΠ,RλΠ) where ΣλΠ is the signature at the left and RλΠ is the rewriting system
containing only the rewrite rule @(λ(x.t(x)), u) −→ t(u).
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Ty : □ |−|7−−→ Ty :: □
Tm : (A : Ty)→ □ |−|7−−→ Tm :: (A :: ty)→ □

Π : (A : Ty)(B : (x : Tm A)→ Ty)→ Ty
|−|7−−→ Π :: (A :: ty)(B :: (x :: tm)→ ty)→ ty

λ : {A : Ty}{B : (x : Tm A)→ Ty} |−|7−−→ λ :: (t :: (x :: tm)→ tm)→ tm

(t : (x : Tm A)→ Tm B(x))→ Tm Π(A, x.B(x))

@ : {A : Ty}{B : (x : Tm A)→ Ty} |−|7−−→ @ :: (t :: tm)(u :: tm)→ tm

(t : Tm Π(A, x.B(x)))(u : Tm A)→ Tm B(u)

While the signature at the left is a specification of TλΠ’s typing rules, the pre-signature at
the right specifies its syntax. For instance, the entry for λ specifies that it takes an argument
of sort tm, where it binds a variable x of sort tm, and produces a term of sort tm.

Signatures and pre-signatures are of course not at all unrelated entities: each signature gives
rise to an associated pre-signature through the dependency erasure function | − |, establishing
the link between the typing layer and the raw syntax layer of CompLF theories.

Note that arguments marked with {−} are removed by the erasure function. These are called
erased arguments and enable the definition of theories with non-annotated syntaxes. They are
thus absent from the syntax, but still appear in the typing rules (similar to [15]). For instance,
when typing λ(x.t) one has to provide derivations of the following four premises.

Γ ⊢ Γ ⊢ A : Ty Γ, x : Tm A ⊢ B : Ty Γ, x : Tm A ⊢ t : Tm B

Γ ⊢ λ(x.t) : Tm Π(A, x.B)

If in one hand erased arguments capture the true syntax used in type theories, they make
typing a non-trival and in general undecidable task. We now address this issue.

Bidirectional typing algorithms [14, 1, 12, 4, 13] are characterized by featuring two modes:
inference (t⇒ T ) and checking (t⇐ T ), which allow to specify the flow of information in typing
rules. For instance, the following rule explains how to type λ(x.t): the terms A and B should
not be guessed, but recovered from the type, which should be given as input. Bidirectional
typing thus complements erased arguments very well, by explaining how they can be recovered.

C −→whnf Π(A, x.B) Γ, x : Tm A ⊢ t⇐ Tm B

Γ ⊢ λ(x.t)⇐ Tm C

2nd contribution We propose a bidirectional typing algorithm for CompLF. Its main distin-
guishing feature is that it is not designed for a specific theory, but instead is theory-agnostic. In
order to use it, we first have to give modes to the signature defining the theory in a mode-correct
way — a condition whose technical definition we do not give here. Each term-level syntactic
constructor and non-erased argument is thus marked with either + (infer) or − (check).

If the rewrite system satisfies confluence and subject reduction, the algorithm is sound, and
if furthermore it satisfies strong normalization, it is also complete for the well-moded terms.

For instance, the entry for λ in ΣλΠ can be annotated as λ− : {A : Ty}{B : (x : Tm A) →
Ty}(t : (x : Tm A) → Tm B(x))− → Π(A, x.B(x)), specifying the bidirectional rule for λ shown
previously. Assuming we give the expected modes to the other entries in ΣλΠ (e.g. as in [13]),
the well-moded terms are exactly the β-normal forms. But if the user wants abstractions to be
inferable, they can instead make A explicit and take λ+ : (A : Ty)−{B : (x : Tm A)→ Ty}(t : (x :
Tm A) → Tm B(x))+ → Π(A, x.B(x)), in which case all terms are well-moded. Our algorithm
thus generalizes other ones which either chose λ− [14, 1] or λ+ [12], by supporting both styles.

The algorithm has been implemented and is available at https://github.com/thiagofelicissimo/
complf. The directory test shows some of the theories that can be defined in CompLF and
used with our algorithm: MLTT with Taski-style universes, universe polymorphism, HOL, etc.
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We present ongoing work on a type-theoretic literature review of the state of the art on con-
tainers, as well as a Cubical Agda formalisation of generalised containers.

Strict positivity An inductive type X is a type given by a list of constructors, each specifying
a way to form an element of X. Defining types inductively is a central notion in Martin-Löf type
theory, with examples including the natural numbers N, lists, finite sets, and many more. In
this setting, we usually want to be able to make sense of our inductive definitions predicatively,
with elements of the type being generated ‘in stages’. The condition we would like to impose
on our definitions is that they are strictly positive. This roughly means that the constructors
of X only allow X to appear in input types that are arrows if it appears to the right. So we
allow constructors like c:(N → X) → X, but not d:(X → N) → X or e:((X → N) → N)
→ X. In general, we want to avoid definitions that are not strictly positive, as they can lead
to inconsistencies under certain assumptions (like classical logic), so we would like a semantic
description of strict positivity in order for our systems to only admit such types. Containers
help us do exactly this.

What are containers? A (ordinary) container S ◁ P is a set of shapes S : Set and a family
of positions over those shapes P : S → Set. Every strictly positive type can be thought of as a
well-founded tree whose nodes are labelled by elements s of S, and where node s has P s many
subtrees. E.g. the List data type is given as a container by (n : N) ◁ (Finn). The shape of a
list is a natural number n : N representing its length, and given a length n, the data of a list is
stored at the positions, which are the elements of a finite set of size n, Finn.

To every container S ◁ P , we associate a functor JS ◁ P K : Set → Set defined as follows.

• On objects X : Set, we have JS ◁ P KX :=
∑

(s : S)(P s → X).

• On morphisms f : X → Y , we have JS ◁ P K f (s, g) := (s, f ◦ g).

This functor reflects the idea that strictly positive types are simply memory locations in which
data can be stored. E.g. the container functor J(n : N) ◁ (Finn)K allows us to represent con-
crete lists. The list of Chars [‘r’, ‘e’, ‘d’] is represented as (3, (0 7→ ‘r’; 1 7→ ‘e’; 2 7→ ‘d’) :∑

(n : N) (Finn → Char). Containers are also known in the literature as polynomial
functors [9, 10]. W-types are the initial algebras of container functors.
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Our contribution Over the years, containers have been studied extensively [1, 7, 5]. Some of
the key developments on containers are presented using a heavily category-theoretic approach—
in particular, they are presented as constructions in the internal language of locally Cartesian
closed categories (LCCCs) with disjoint coproducts and W-types (also called Martin-Löf cat-
egories). We felt that adapting these results using a more type-theoretic approach would be
beneficial for a few reasons. Firstly, using LCCCs to describe models of dependent type theory
is too restrictive and not entirely precise (e.g. setoids are not an LCCC [11] but still model
dependent type theory). Secondly, we wanted a more accessible presentation of containers
for programmers and computer scientists, who might have less of a thorough background in
category theory.

To this end, we present ongoing work on a review paper offering a comprehensive and up-
dated type-theoretic view of the state of the art on containers [4]. The paper presents all the
established results on (ordinary) containers, discusses other kinds of containers, introduces gen-
eralised containers [6], and does so in the language of type theory. To supplement this study,
we formalised several results on containers in Cubical Agda [8]. We have two proofs in Cubical
Agda of the central result that the container extension functor J_K mapping containers to func-
tors is full and faithful. This was proven for the case of generalised containers, which generalise
ordinary containers in that they are parameterised by an arbitrary category C and give rise to
functors of type C → Set. One follows the proof given in [1], and the other is a new proof that
makes use of the Yoneda lemma. While these two proofs are fully formalised, the review paper
as well as a formalisation of additional results is work in progress.

One of the consequences of J_K being full and faithful is that we obtain a characterisation
of natural transformations between container functors (i.e. polymorphic functions on strictly
positive types) as container morphisms. A container morphism (S ◁ P ) → (T ◁ Q) is a pair
u : S → T and f : (s : S) → Q (u s) → P s, e.g. container morphisms between lists are given by a
pair u : N → N and f : (n : N) → Fin (un) → Fin n. This result tells us that any polymorphic
function on lists (such as tail and reverse) can be represented as such a pair, supporting the
claim that containers are a canonical way of representing strictly positive types.

Our formalisation makes use of the category theoretic definitions available in the Cubical library.
The Cubical mode of Agda avoids us having to postulate functional extensionality, facilitates
the use of heterogenous equality, and allows for future generalisations related to higher inductive
types (discussed below).

Future work Our survey of containers was primarily motivated by our current interest in
applying them to obtain semantics for quotient inductive-inductive types (QIITs). Our end
goal is to provide a canonical way to represent QIIT specifications that admit an initial algebra,
i.e. the strictly positive ones. Our approach is to ‘containerify’ the semantics given in [2] to
obtain a semantics for strictly positive QIITs. More details on this can be found at [3].
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Abstract

We report on a mechanization in the Coq proof assistant of the decidability of conver-
sion and type-checking for Martin-Löf Type Theory (MLTT), extending a previous Agda
formalization. Our development proves the decidability not only of conversion, but also of
type-checking, using bidirectional derivations that are canonical for typing. Moreover, we
wish to narrow the gap between the object theory we formalize (currently MLTT with Π,
Σ, N and one universe) and the metatheory used to prove the normalization result, e.g.,
MLTT, to a mere difference of universe levels. We thus avoid induction-recursion or im-
predicativity, which are central in previous work. Working in Coq, we also investigate how
its features, including universe polymorphism and the metaprogramming facilities provided
by tactics, impact the development of the formalization compared to the development style
in Agda. The development is freely accessible on GitHub [2].

MLTT and its metatheory Establishing meta-theoretic properties such as the existence of
canonical forms or decidability of the derivability of judgements of dependent type systems is
a notoriously complex endeavour. For instance, the MetaCoq project [11, 12] aims at entirely
formalizing the Predicative Calculus of Cumulative Inductive Constructions (PCUIC) underly-
ing Coq, and showing the correctness of an implementation of a typechecker. However, to do
so it assumes an axiom stating that the theory is normalizing.

Indeed, for these meta-theoretical properties, type dependency precludes most proof strate-
gies, which ultimately rely on a stratification between types and terms. To go beyond these
limitations, Abel et al. [1] formalize an inductive-recursive [5] definition of a logical relation for
a representative fragment of MLTT in Agda, to show normalization and decidability of con-
version for this theory. This technique was further extended to more complex theories [6, 10].

The use of the induction-recursion scheme however introduces a new gap between the object
theory being formalized (which only supports a handful of simple inductive types), and the
meta-theory used to formalize the result. While exploring normalization proofs for complex
inductive schema is a very valuable endeavour, we wish to go the other way around, and narrow
this gap by using only regular indexed inductive types. This is both a requirement and a benefit
of working in Coq, which only handles this class of inductive types. Thus, we reformulate the
logical relation using small induction-recursion, which can in turn be encoded using simple
indexed inductive types [7]. This strategy requires definitions that are replicated across several
universe levels, for which the universe polymorphic features of Coq come in handy.

A bidirectional presentation of MLTT In [1], only decidability of conversion is shown.
While this is definitely the most intricate part of showing decidability of type-checking, going
from the former to the latter is non-trivial. Indeed, type-checking for MLTT as defined in [1]
is not, in general, decidable, for lack of annotations [4, 15].

In our development, we show decidability of typing, by extending algorithmic conversion-
checking to a full account of algorithmic typing, described in a bidirectional fashion [8, 9].
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Following the strategy implemented for instance by Coq, we use annotated (Church-style)
abstractions, so that inference is complete, i.e., every well-typed term infers a type.

More generally, ideas from bidirectional typing help greatly in guiding the definition and
handling of the algorithmic parts of the system. For instance, for most proofs on the algorithmic
system we rely on a custom induction principle which threads the invariants maintained by a
bidirectional algorithm, giving us extra hypotheses for each induction step. This lets us handle
once and for all these invariants that are required for most proofs, rather than bundling them in
the predicate proven by induction, which would mean showing their preservation again during
each proof by induction.

Three logical relations in one We show that a bidirectional presentation of our type theory
is equivalent to its standard declarative presentation given in the Martin-Löf Logical Framework.
To do so, we parametrize the definition of the logical relation by a generic typing interface. The
interface is instantiated 3 times: once with the declarative typing, once with a mixed system
with declarative typing and algorithmic conversion, and finally with a fully algorithmic system
using bidirectional typing. These different instances are used to gradually show properties of
the system: the declarative instance lets us show enough good properties of the declarative
system to be able to show that the mixed system fits the generic typing interface; the mixed
instance proves that declarative and algorithmic conversion coincide, which is used to show that
bidirectional typing fits in the generic interface; finally the fully algorithmic instance gets us
the desired equivalence, showing that the type-checking algorithm is sound and complete.

Engineering aspects We rely on Autosubst [14, 3] to deal with all the aspect of the raw
syntax, defining untyped renamings and substitutions, generating boilerplate lemmas on these,
as well as providing tactical support to discharge equational obligations.

To support working with multiple different notions of conversion and typing, sometimes si-
multaneously, we devised a generic notation system based on type classes in the Math Classes
style [13], with a system of tags that lets us disambiguate between the different notions when
needed, but can be ignored safely when working on a single notion or parametrically.

To ease the development, we use tactics to provide for judgement-independent notions, e.g.
we use a single irrelevance tactic to discharge goals requiring a lemma stating that some form
of the logical relation is irrelevant in some of its parameters. An important part of the work
achieved by the definition of the logical relation consist in its generalization of typing contexts
through Kripke-style quantifications over renamings and substitutions, and we use instantiation
tactics to automatically apply lemmas to the relevant hypotheses.

Future work We could add more universes to obtain a hierarchy of arbitrary finite length,
and see no theoretical obstacle in doing so. We plan to extend the formalization to a scheme of
indexed inductive types used in Coq, hence narrowing the gap between the object theory and
the metatheory used to prove its normalization: this would lead to a formalization of MLTT
with n universes into MLTT with n+ k universes for a (small but strictly positive) constant k.

On the bidirectional side, we do not cover the common pattern, used for instance in the
kernel of Agda, of having some terms that only check (typically, unannotated abstraction). It
would be interesting to obtain a decidability result that covers these as well.

Finally, there is a large space left to improve automation, taking inspiration from the rich
Coq ecosystem. Indeed, the main difficulty for a proof by logical relations is in the setup of the
relation, but most proof obligations are rather repetitive and unsurprising. While our tactics
already relieve us from quite a bit of this tedious work, they are far from making it all disappear.
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Abstract

Multimode type theory (MTT) is parametrized by a mode theory : a 2-category whose objects,
morphisms and 2-cells serve as internal modes, modalities and 2-cells. So far, this mode theory
has remained in the metatheory, with syntactic modal type and term formers being indexed by
metatheoretic gadgets. Building a syntactic lock calculus on top of the mode theory has several
advantages: the modal aspects of substitution take the form of more familiar syntactical
substitutions, the lock operation on contexts can be axiomatized as pseudofunctorial so that
models of MTT no longer need to be strict(ified), and we can have internal mode, modality
and 2-cell polymorphism with intensional 2-cell equality.

Notation 1. Throughout the abstract, we let p, q, r, s stand for modes, µ, ν, ρ for modalities, α
for 2-cells, m, n, o for lock variables, s, t, u, v for lock terms, and S,T for lock substitutions.

Lock variables and lock terms Before we consider what a lock calculus for MTT [GKNB21]
should look like, we first modify the original MTT notation so that locks can be referred to via
lock variables, which can be substituted with lock terms:1

Original Γ,µµ Γ, µ p x : T xα ⟨µ | T ⟩ modµ t

Named Γ,m : µµ Γ, x : {m : µµ}T x(¤α(n)) (m : µµ)→ T λ(m : µµ).t

Original letν (modµ x = s) in t

Named let (n : µν ⊢ λ(m : µµ).x(n)(m) = s) in t

This notation makes several inference rules look familiar or at least reasonable:

Γ,m : µµ ⊢ T type @ p µ : p→ q

Γ, x : {m : µµ}T ctx @ q

Γ,m : µµ ⊢ t : T @ p µ : p→ q

Γ ⊢ λ(m : µµ).t : (m : µµ)→ T @ q

α : µ⇒ ν : p→ q

n : µν ⊢ ¤α(n) : µµ @ q → p

Γ, x : {m : µµ}T, n : µν ⊢ x(¤α(n)) : T [¤α(n)/m] @ p

In the intermediate step of the last rule, we already encounter a novel lock term ¤α(n).

Lock calculus The lock calculus LC has the following judgement forms, and we give their
intuitive and semantical meaning:2

Ψ ltele @ q → p Ψ is a lock telescope q → p JΨK is a functor JqK→ JpK.
Ψ ⊢ t : µµ t is a lock term in ctx. Ψ JtK : JΨK→ JµµK is a nat. transf.
Ψ ⊢ e : s = t : µµ @ q → p e proves intensional equality JsK = JtK.
Ψ ⊢ T : Φ @ q → p T is a lock subst. from Ψ to Φ JTK : JΨK→ JΦK is a nat. transf.
Ψ ⊢ e : S = T : Φ @ q → p e proves intensional equality JSK = JTK.

The origin of locks and lock terms remains the external mode theory:

() ltele

Ψ ltele @ r → q µ : p→ q

Ψ,m : µµ ltele @ r → p

1This is an improvement of the tick notation proposed in [Nuy20, ch. 5.3].
2In the style of generalized algebraic theories [Car86, Car78], we omit judgments for definitional equality.
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µ : p→ q

m : µµ ⊢ m : µµ @ q → p

α : µ⇒ ν : p→ q Ψ ⊢ t : µν

Ψ ⊢ ¤α(t) : µµ @ q → p
.

Lock substitutions arise from terms and compose horizontally. Vertical composition of substitution
is a special case of general substitution, which actually works by syntactical substitution of lock
terms for lock variables, and should extend to MTT:

Ψ ⊢ t : µµ

Ψ ⊢ (t/m) : (m : µµ)

Ψ′ ⊢ S : Φ′ @ r → q Ψ ⊢ T : Φ @ q → p

Ψ′,Ψ ⊢ S,T : Φ′,Φ @ r → p

Ψ ⊢ J Φ ⊢ S : Ψ

Φ ⊢ J [S]

Identity and composite locks MTT originally has strict equality rules (Γ,µid) = Γ and
(Γ,µµ◦ν) = (Γ,µµ,µν). We wish to turn these into natural isomorphisms, and we start by doing
so in the lock calculus. The lock calculus serves to be the internal language of the mode theory,
which can be any 2-category. As 2-categories are the horizontal categorification (a.k.a. oidification)
[nLa23] of (non-symmetric) monoidal categories, we can draw inspiration from existing calculi for
those [JM10, §2.1][Shu16, §2.4.2]. We get constructors for identity and composite locks:

⊢ () : µid @ p→ p

Φ ⊢ s : µν @ r → q Ψ ⊢ t : µµ @ q → p

Φ,Ψ ⊢ (s, t) : µν◦µ @ r → p

These are eliminated using a let-expression. However, in order to be able to intensionally prove
naturality of this let-expression w.r.t. its target lock, we will also provide the let expression
for intensional equality. In order to be able to split composite and remove identity locks in MTT
without the context equations given above, we will even provide the let-expression for MTT terms:3

Φ, n : µν ,m : µµ,Ψ ⊢ u : µρ @ s→ o Ξ ⊢ t : µν◦µ @ r → p

Φ,Ξ,Ψ ⊢ let ((n,m) = t) in u : µρ @ s→ o

Φ, o : µν◦µ,Ψ ⊢ u, v : µρ @ s→ o Ξ ⊢ t : µν◦µ @ r → p
Φ, n : µν ,m : µµ,Ψ ⊢ e : u[(n,m)/o] = v[(n,m)/o] : µρ @ s→ o

Φ,Ξ,Ψ ⊢ let ((n,m) = t) in e : u[t/o] = v[t/o] : µρ @ s→ o

Γ, o : µν◦µ,Ψ ⊢ A type @ o Ξ ⊢ t : µν◦µ @ r → p
Γ, n : µν ,m : µµ,Ψ ⊢ a : A[(n,m)/o] @ o

Γ,Ξ,Ψ ⊢ let ((n,m) = t) in a : A[t/o] @ o

These let-expressions β-reduce definitionally when t is actually a pair. There are similar rules for
µid. We can now admit pseudofunctorial models by interpreting the introduction and elimination
rules for µid and µν◦µ via the unitors and compositors of the model.

The metamode We have not yet delivered on our promise to allow internal mode, modality
and 2-cell polymorphism, nor have we explained how to use intensional 2-cell equality. In each of
these cases, we need to step outside the mode theory to reason about it, and we need a type system
for that, so that we can quantify and use a J-rule. To this end, we include another copy of MLTT –
to be modelled in a category of sufficiently big sets – called the metamode (whose type assignment
will be denoted with a :: A), and prefix every MTT and LC judgement with a metamode context
Θ. (Dependent) types of modes, modalities and 2-cells exist in the metamode and their behaviour
depends on the choice of mode theory. When MTT or LC requires a mode, modality or 2-cell, we
can take a metamode term in context Θ. Additionally, there will be metamode types of lock and
MTT terms, lock substitutions and intensional LC equality (with J-rule):4

Θ | · ⊢ t : T @ p

Θ ⊢ ⌜t⌝ :: Tmp(T )

Θ | Ψ ⊢ t : µµ @ q → p

Θ ⊢ ⌜t⌝ :: LTmq→p(Ψ, µ)

Θ | Ψ ⊢ e : s = t : µµ @ q → p

Θ ⊢ ⌜e⌝ :: LTEq→p(Ψ, µ, s, t)

Θ ⊢ t :: Tmp(T )

Θ | Γ ⊢ ⌞t⌟ : T @ p

Θ ⊢ t :: LTmq→p(Ψ, µ)

Θ | Ψ ⊢ ⌞t⌟ : µµ @ q → p

Θ ⊢ e : LTEq→p(Ψ, µ, s, t)

Θ | Ψ ⊢ ⌞e⌟ : s = t : µµ @ q → p

3In MTT, the telescope to the right of Ξ can be quantified over, so we may assume it to be empty or more
generally a lock telescope.

4In MTT, the entire context can be quantified over, so we may assume it to be empty.
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We study epimorphisms and acyclic types in univalent mathematics. The epimorphisms are
of course a natural object of study, the definition being that a map f : A → B is an epimorphism
if for every type X, the precomposition map

(B → X) (−)◦f−−−−→ (A → X)

is an embedding. Put differently, extensions of maps from A through B are unique if they exist.
The epimorphisms behave quite differently in higher types than do the surjections of sets, as

can be seen from considering the higher inductive type of the circle S1. Recall that this type
has a basepoint base : S1 such that the type of loops base =S1 base is equivalent to the type of
integers Z. While the unique map from the two-element type 2 to the unit type 1 is a surjection,
it is not an epimorphism of types, because one can show that the type of dashed extensions in
the diagram

2 1

S1

[base,base]

does not have at most one element, so that the extension is not unique.

Our aim In the classical theory of spaces, it is known that epimorphisms are related to
so-called acyclic spaces. We show that the same is true in univalent type theory. Thus, we turn
to algebraic topology to answer a question about types, namely: what are the epimorphisms in
univalent type theory? In doing so, we contribute to the field of synthetic homotopy theory,
where the language of univalent type theory is used to develop algebraic topology without
reference to set-based presentations such as topological spaces or simplicial sets.

Acyclic types Classically, a space is acyclic if its reduced integral homology vanishes. This
characterization only works assuming Whitehead’s principle, and the correct definition in
univalent mathematics is the following:

Definition 1. A type A is acyclic if its suspension is contractible. We extend this definition to
maps by declaring a map f : A → B to be acyclic if all of its fibers fibf (b) :≡ ∑

a:A f(a) = b are.

We recall that the suspension of a type A is the higher inductive type generated by two
points N (north) and S (south) and a path from N to S for every element a : A.

We can then characterize the epimorphisms as the acyclic maps:

Theorem 2. A map is an epimorphism if and only if it is acyclic.
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It follows from the theorem that being an epimorphism is a fiberwise notion and therefore
we can for example immediately deduce that the epimorphisms are closed under retracts and
stable under pullback along arbitrary maps. Moreover, we can show that the epimorphisms are
pushout stable and satisfy a 3-for-2 property.

In other words, the class of acyclic maps (equivalently, epimorphisms) enjoys reasonable
closure properties. However, it turns out to be somewhat difficult to construct acyclic types.
Indeed, the construction of a nontrivial acyclic type answers a question left open in [CR22,
Ex. 6.6]. The construction of such a nontrivial acyclic type is our next main contribution.

That such types cannot be sets is because of the following:

Theorem 3. A set is acyclic if and only if it is contractible.

Interestingly, to prove this, we need the fact that the generators map η : A → FA, from A to
the free group on A is an injection [MRR88, Chapter X]. This has previously been proved in
homotopy type theory [BCDE21] with a recent synthetic proof in [Wär23].

Classically, it’s well known that the Higman group [Hig51], given by the presentation

H = ⟨ a, b, c, d | a = [d, a], b = [a, b], c = [b, c], d = [c, d] ⟩,

where [x, y] = xyx−1y−1 denotes the commutator of x and y, is acyclic (i.e., has an acyclic
classifying space), and moreover, this presentation is aspheric, meaning that the presentation
complex is already a 1-type [DV73]. The presentation complex is easily imported into homotopy
type theory as the higher inductive type BH with a point constructor pt : BH, four path
constructors a, b, c, d : ΩBH, and four 2-cell constructors corresponding to the relations.

The Eckmann–Hilton argument [Uni13, Theorem 2.1.6] tells us that the higher homotopy
groups of any type are abelian. Together with a higher inductive description of the suspension
of BH, we can show:

Theorem 4. The type BH is acyclic.

It is also possible to construct BH as a series of iterated pushouts. This description and
recent results of David Wärn [Wär23] allow us to prove:

Theorem 5. The type BH is a 1-type (i.e. its identity types are sets) and it is nontrivial.

Specifically, we can show that the generators a, b, c and d all have infinite order in the
loop space of BH. It is noteworthy that this type-theoretic proof completely avoids classical
combinatorial group theory.

Future directions Classically, the acyclic maps form the left class of an accessible orthogonal
factorization system, whose right class are the hypoabelian maps (i.e., whose π1-kernels have no
non-trivial perfect subgroups). This factorization system exists in all (∞, 1)-toposes [Hoy19],
and can be used to derive the McDuff–Segal completion theorem, but with arguments that don’t
lend themselves to direct internalization in homotopy type theory.

We believe that it is possible to construct the factorization system using Quillen’s plus
construction in HoTT, although, at present, we need to assume additional axioms in the form of
Sets Cover, Whitehead’s Principle and Countable Choice.

We would also like to investigate whether other classically known acyclic types and maps can
be shown to be so in homotopy type theory, such as B Aut(N) [dlHM83] and BΣ∞ → (Ω∞Σ∞S0)0,
the Barratt–Priddy(–Quillen) theorem [BP72].
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Set theory or type theory; which one is “better” for constructive mathematics? While we
do not dare to offer an answer to this question, we can at least report that when it comes
to constructive ordinal theory, the choice between these two foundations is insignificant: the
set-theoretic and type-theoretic ordinals coincide. We consider this an interesting finding since
ordinals are fundamental in the foundations of set theory and are used in theoretical computer
science in termination arguments [7] and semantics of inductive definitions [1, 5].

Comparing ordinals in set theory and (homotopy) type theory In constructive set
theory [3], following Powell’s seminal work [9], the standard definition of an ordinal is that of a
transitive set whose elements are again transitive sets. A set x is transitive if for every y ∈ x
and z ∈ y, we have z ∈ x. Note how this definition makes essential use of how the membership
predicate ∈ in set theory is global, by referring to both z ∈ y and z ∈ x. In type theory, on
the other hand, the statement “if y : x and z : y then z : x” is ill-formed, and so ordinals need
to be defined differently. In the homotopy type theory book [10], an ordinal is defined to be
a type equipped with a proposition-valued order relation that is transitive, extensional, and
wellfounded [10, §10.3]. Extensionality implies that the underlying type of an ordinal is a set [6].

A priori, the set-theoretic and the type-theoretic approaches to ordinals are thus quite
different. One way to compare them is to interpret one foundation into the other. Aczel [2]
gave an interpretation of Constructive ZF set theory into type theory using setoids, which was
later refined using a higher inductive type V [10, §10.5], referred to as the cumulative hierarchy.
Using the set membership relation ∈ on the cumulative hierarchy, we can construct the subtype
Vord of elements of V that are set-theoretic ordinals. Similarly, we write Ord for the type of
all type-theoretic ordinals, i.e., for the type of transitive, extensional, and wellfounded order
relations. A fundamental result about type-theoretic ordinals is that, using univalence, the type
Ord of (small) ordinals is itself a type-theoretic ordinal when ordered by inclusion of strictly
smaller initial segments (also referred to as bounded simulations), and we show that the type
Vord of set-theoretic ordinals also canonically carries the structure of a type-theoretic ordinal.

Next, we show that Vord and Ord are equivalent, meaning that we can translate between
type-theoretic and set-theoretic ordinals. Furthermore, the isomorphism that we construct
respects the order structure of Vord and Ord, which means that Ord and Vord are isomorphic as
(large) ordinals. Thus, the set-theoretic and type-theoretic approaches to ordinals coincide in
homotopy type theory:
Theorem 1 ([4, Theorem 33] Ó). The ordinals Ord and Vord are isomorphic (as type-theoretic
ordinals). Hence, by univalence, they are equal.

Generalising from ordinals to sets Since the subtype Vord of V is isomorphic to Ord, a type
of ordered structures, it is natural to ask if there is a type of ordered structures that captures all
of V. That is, we look for a type T of ordered structures such that Diagram 1 below commutes.
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Vord Ord

V T

≃

≃

(1)

Since V is Vord with transitivity dropped, it is tempting to try to
choose T to be Ord without transitivity, i.e., the type of extensional
and wellfounded relations. However such an attempt cannot work for
cardinality reasons: for example, the set-theoretic ordinal 2 = {∅, {∅}}
corresponds to the type-theoretic ordinal α with elements 0 < 1, but
there are more subsets of 2 than subrelations of α. Instead we need
additional structure to capture the elements of elements (of elements
. . . ) of sets. To this end, we introduce the type MEWOcov of (covered) marked extensional
wellfounded order relations (mewos), i.e., extensional wellfounded relations with additional
structure in the form of a marking.1 The idea is that the carrier of the order also contains
“deeper” elements of elements of the set, with the marking designating the “top-level” elements.
Such a marking is covering if any element can be reached from a marked top-level element, i.e.,
if the order contains no “junk”. Since every ordinal can be equipped with the trivial covering
by marking all elements, the type Ord of ordinals is a subtype of the type of covered mewos.
Taking T = MEWOcov, this gives the inclusion Ord ↪→ T in Diagram 1.

To show also V ≃ MEWOcov, we develop the theory of covered mewos: the type of covered
mewos is itself a covered mewo, with order < given by an appropriately modified notion of
bounded simulation (to take the lack of transitivity into account), and covered mewos are closed
under both singletons and least upper bounds of arbitrary (small) families of covered mewos.
We can then show that indeed T = MEWOcov fulfils the requirements of Diagram 1:

Theorem 2 ([4, Theorem 76] Ó). The structures (V, ∈) and (MEWOcov, <) are equal as covered
mewos.

Full Paper and Formalisation More details are available in our paper at LICS this year [4].
We have also formalised all our results in Agda. An HTML rendering can be found at the URL
https://tdejong.com/agda-html/st-tt-ordinals/index.html.
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Abstract

We present a generalization of Spector’s bar recursion to the Diller-Nahm variant of
Gödel’s Dialectica interpretation. This generalized bar recursion collects witnesses of uni-
versal formulas in sets of approximation sequences to provide an interpretation to the
double-negation shift principle. The interpretation is presented in a fully computational
way, implementing sets via lists. We also present a demand-driven version of this extended
bar recursion manipulating partial sequences rather than initial segments. We explain
why in a Diller-Nahm context there seems to be several versions of this demand-driven bar
recursion, but no canonical one.

Gödel’s functional interpretation [4], also known as the Dialectica interpretation (from the name
of the journal it was published in) is a translation from intuitionistic arithmetic into the Σ0

2

fragment of intuitionistic arithmetic in finite types. If π is a proof of arithmetical formula A,
then the functional interpretation of π is a proof of a formula AD ≡ ∃x⃗∀y⃗AD (x⃗, y⃗) where AD is
quantifier-free. This formula can be understood as asserting that some two-player game has a
winning strategy: there exists a strategy x⃗ such that for all strategy y⃗, x⃗ wins against y⃗, that is,
AD (x⃗, y⃗) holds. By the witness property, the proof of AD yields a proof of ∀y⃗AD

(
t⃗, y⃗

)
for some

sequence of terms t⃗ in system T: simply-typed λ-calculus with recursion over natural numbers
at all finite types. This sequence t⃗ of programs is the computational content of π under the
Dialectica interpretation.

Since the negative translation of every axiom of arithmetic is provable in intuitionistic
arithmetic, the Dialectica interpretation combined with a negative translation provides an in-
terpretation of classical arithmetic. When it comes to classical analysis (classical arithmetic
plus the axiom of countable choice) this is not true anymore, as the negative translation of the
axiom of choice fails to be an intuitionistic consequence of the axiom of choice. Spector’s bar
recursion operator [8] provides a Dialectica interpretation of the double-negation shift (DNS)
principle, from which one can derive intuitionistically any formula from its negative translation.
Applying this to the axiom of countable choice, Spector obtains an interpretation of classical
analysis.

Interpreting the contraction rule A ⇒ A ∧ A in Gödel’s original interpretation requires
(besides the λx. ⟨x, x⟩ component) a program that, given a witness M and two potential coun-
terwitnesses x and y of A such that either x or y wins against M , answers with a single
counterwitness that wins against M . Doing that relies on the decidability of winningness,
which ultimately relies on the decidability of atomic formulas of the source logic (which is true
in arithmetic). In order to get rid of this decidability requirement, Diller and Nahm [2] defined
a variant of Gödel’s interpretation where the programs provide a finite set of counterwitnesses,
with the requirement that at least one is correct. In the previous example, the program inter-
preting the contraction rule answers with the set {x; y} and does not have to decide which one
is correct. The first contribution of this paper is the extension of Spector’s bar recursion to the
Diller-Nahm setting. Our operator has a lot in common with the extension of bar recursion to
the Herbrand functional interpretation of non-standard arithmetic [3], though there are notable
differences which are discussed.
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Figure 1: Contributions of the paper, in bold font

Berardi, Bezem and Coquand [1] adapted Spector’s bar recursion from Gödel’s Dialectica to
Kreisel’s modified realizability [6]. Their operator also behaves differently from Spector’s orig-
inal bar recursion as it is demand-driven: it computes the choice sequence in an order that is
driven by the environment, rather than in the natural order on natural numbers. This provides
a more natural computational interpretation to the axiom of countable choice. More recently,
Oliva and Powell [7] adapted Berardi-Bezem-Coquand’s operator to Gödel’s Dialecica inter-
pretation and obtained a demand-driven bar-recursive interpretation of the axiom of countable
choice in this setting. The second contribution of this paper is the definition of a demand-driven
bar recursion operator in the Diller-Nahm setting.

Figure 1 summarizes the two contributions of this paper as well as their relationship to the
state of the art. An arrow from X to Y means that Y is an extension/refinement/variant of X,
and we distinguish elements that take place in the framework of realizability from those that
take place in the framework of Dialectica-style functional interpretations.

This work has been selected for presentation at the FSCD 2023 conference.
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Abstract
Markov’s principle (MP) is an axiom in some varieties of constructive mathematics,

stating that Σ0
1 propositions (i.e. existential quantification over a decidable predicate on N)

are stable under double negation. However, there are various non-equivalent definitions of
decidable predicates and thus Σ0

1 in constructive foundations, leading to non-equivalent
Markov’s principles. This fact is often overlooked and leads to confusion: At the time of
writing, both Wikipedia and nlab claim propositions to be equivalent to MP, which are
however only respectively equivalent to two non-equivalent forms of MP.

We give three variants of MP in constructive type theory, along with respective equiva-
lence proofs to different formulations of Post’s theorem (“Σ0

1-predicates with complement in
Σ0

1 are decidable”), stability of termination of computations, the statement that an extended
natural number is finite if it is not infinite, and to completeness of natural deduction w.r.t.
Tarski semantics over the (∀,→,⊥)-fragment of classical first-order logic for Σ0

1-theories.
The first definition (MPP) uses a purely logical definition of Σ0

1 for predicates N → P, while
the second one (MPB) relies on type-theoretic functions N → B, and the third one (MPPR)
on a model of computation.

We conclude with the – to the best of our knowledge – first proof that MPB is not
equivalent to MPPR using a model via Cohen and Rahli’s TT□

C , and pose the open question
how to separate MPP from MPB – where the model would have to invalidate unique choice.

Definitions We work in constructive type theory with a universe of propositions P, e.g. in the
calculus of inductive constructions (CIC). We define three variants of Markov’s principle:

MPP ∶= ∀A ∶ N → P. (∀n. An ∨ ¬An) → ¬¬(∃n. An) → (∃n. An)
MPB ∶= ∀f ∶ N → B. ¬¬(∃n. fn = true) → (∃n. fn = true)
MPPR ∶= ∀f ∶ N → B. primitive-recursive f → ¬¬(∃n. fn = true) → (∃n. fn = true)
We write MPPR following Troelstra and van Dalen [12]. Due to the Kleene normal form

theorem [7], any principle replacing primitive recursiveness with computability in any Turing
complete model is equivalent, e.g. called MPL in [4] after the weak call-by-value λ-calculus L [6].

Note that MPP implies MPB, which in turn implies MPPR. The first implication is an
equivalence given the axiom of (type-theoretic) unique choice, i.e. if ∀R ∶ N → B → P.(∀n ∶ N.∃!b ∶ B.Rnb) → ∃f ∶ N → B.∀n. Rn(fn) holds, because then any such A ∶ N → P gives
rise to a decider of type N → B. The second implication is an equivalence under CT (“Church’s
thesis” [9]), i.e. if the proposition ∀f ∶ N → B. computable f holds. MPP is consistent because it
is a consequence of the law of excluded middle (LEM). MPB is proved independent from type
theory by Mannaa and Coquand [2] as well as Pedrót and Tabareau [10], and MPL by Forster,
Kirst, and Wehr [5]. In a (weak) type theory such as CIC, both the unique choice axiom from
above and CT are independent. In many constructive foundations (CZF, IZF, HoTT, or in
MLTT with ∃ as Σ), unique choice is a theorem, but CT remains independent. Since in all these
foundations ∃n ∶ N. fn = true implies Σn ∶ N. fn = true, stating MP with Σ or ∃ is equivalent.
On Σ0

1 Predicates A predicate p ∶ X → P is stable under double negation if ∀x. ¬¬px → px,
and is Σ0

1 if there exists a decidable predicate A ∶ X → N → P such that ∀x. px ↔ ∃n. Axn.
Now if decidable predicates A ∶ X → N → P only need to fulfill ∀xn. Axn∨¬Axn, then stability
of Σ0

1 predicates is equivalent to MPP. If however decidable predicates are associated with a
function of type X → N → B, stability of Σ0

1 predicates is equivalent to MPB. And if decidable
predicates are associated with a computable function of that type, it is equivalent to MPPR.
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Post’s Theorem (PT) [11] states that Σ0
1 predicates with complement in Σ0

1 are decidable.
With decidable predicates defined using type-theoretic functions, PT is equivalent to MPB [12],
formalised in Coq by Forster, Kirst, and Smolka [3]. With decidable predicates defined using
computable functions, PT is equivalent to MPPR, formalised in Coq by Forster and Smolka [6].
With the logical definition, PT is equivalent to MPP, a proof we contribute with this abstract.
Termination of Computation It is folklore that “a computation halts if it does not run
forever” is equivalent to MP. Taking a computation as a Σ0

1 relation N→N→P, the three respective
definitions of Σ0

1 indeed render this equivalent to the respective version of MP. In particular,
the statement “a Turing machine halts if it does not run forever” is equivalent to MPPR.
Extended Natural Numbers One can model the extension of N with a point of infinity as
monotonous infinite sequences of truth values bi (if bi then bj holds for j ≥ i). MP is equivalent
to “an extended natural number which is not infinite is finite”, precisely to MPP if sequences are
defined as predicates N → P, and to MPB if defined as functions N → B. Defining sequences as
computable functions N → B is unusual, but would be equivalent to MPPR.
First-order Completeness It was already known to Gödel that completeness of natural
deduction w.r.t. Tarski-semantics over the (∀,→,⊥)-fragment of classical first-order logic is
equivalent to MPPR [8]. The result can be extended to Σ0

1-theories, but again the definition of
Σ0

1 is crucial. The equivalences to MPB and MPPR are proved in Coq by Forster, Kirst, and
Wehr [4], we contribute the respective (Coq) proof for MPP.
TT□

C is a general framework for type theories modeled through an abstract modality □ and
parameterised by a type of time-progressing choice operators C due to Cohen and Rahli [1],
which is formalised in Agda. Time-progression here means that TT□

C ’s computation system
includes stateful computations that can evolve non-deterministically over time (captured by
a poset W of worlds), and that can change the state of the world. Instantiating □ and C can
either validate or invalidate axioms such as MP.
Separation of MPB and MPPR We prove that instantiating C with choice sequences and □
with a Beth modality as in [1] yields a model validating constructively ¬MPB, and, assuming
LEM in the meta-theory, MPPR. To do so, we translate the types N and B to the types Nat and
Bool of possibly effectful terms with two properties: (1) if they compute to a value in a world,
they compute to the same value in all extensions of that world; and (2) whenever they compute
to a value, they leave the world unchanged. Such effectful terms do not satisfy MPB because f
can be undetermined for all inputs and thus satisfy ¬¬(∃n. fn = true) but not ∃n. fn = true.
However, primitive recursive functions can be encoded as natural numbers, and thus behave like
a pure, effect-free function. Concretely, we have that

∀(w ∶W).w /⊨ Πf ∶Nat → Bool.(¬¬↓Σn∶Nat.f n = true) → ↓Σn∶Nat.f n = true

Here, the ↓ operation discards the computational content of the dependent pair type Σ.
Furthermore, with LEM in the meta-theory, MP for pure (i.e. effect-free) functions is valid in all
models in [1] (see mpp.lagda), with Πp letting f range over pure, effect-free terms only:

∀(w ∶W).w ⊨ Πpf ∶Nat → Bool.(¬¬↓Σn∶Nat.f n = true) → ↓Σn∶Nat.f n = true

To show that this implies MPPR, note that MPPR can be equivalently stated as

∀(w ∶W).w ⊨ Πm∶Nat.(¬¬↓Σn∶Nat.eval m n = true) → ↓Σn∶Nat.eval m n = true

where eval ∶ N → N → B is a pure function which interprets its first argument as the
Gödelisation of a primitive recursive function f , and for any primitive recursive f there is m
with ∀n.fn = eval m n. Now whenever an effectful m evaluates to c in a world w, we have that
eval c is a pure function for all w ′ ⊒ w, making the pure form of MP applicable (see pure2.lagda).

2
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Homotopy Type Theory is an extension of MLTT that allows us to study ideas from topology
by re-expressing them a synthetic language, see [Uni13, LB13, HFFLL16]. For example, paths
are modeled by terms of equality types. The synthetic nature allows one to manipulate the
nuts and bolts of homotopy theory directly, keeping a strong connection to the geometric ideas.

With the desire to gain better insight into how to approach homotopy theory in HoTT, we
set out to prove that there is no degree one map from a closed oriented genus g surface to a
closed oriented genus h surface if g < h. Although we have not reached that destination, along
the way we have proved synthetic versions of some classical results.

Building on Hou (Favonia) and Harper’s results on covering spaces [HH18], we prove HoTT
versions of the lifting criterion and the classification of covering spaces; although these are al-
ready shown in HoTT [BvDR18, Thrm. 7], the proofs we provide are more basic and might
be more accessible. Secondly, we show when there exists canonical change-of-basepoint iso-
morphisms πn(X, a) ∼= πn(X, b) . The theory is formalized in Coq using the HoTT library
[BGL+17], see https://gitlab.tue.nl/computer-verified-proofs/covering-spaces.

Classification of Covering Spaces. Before one can prove results from classical homotopy
theory in HoTT, one needs to find proper translations of these results. One might try a direct
translation first: the classical results can be stated in HoTT using existing definitions of the
fundamental group and induced maps from the HoTT book [Uni13]. The new language also
allows one to express the underlying ideas in different ways.

Using Hou (Favonia) and Harper’s definition of pointed covering spaces in HoTT [HH18,
Def. 7], we prove a direct translation of the lifting criterion.

Lemma 1 (Lifting Criterion, cf. [Hat01, Prop. 1.33]). Let F : X → Set with u0 : F (x0) be a
pointed covering space over a pointed type (X,x0) . A pointed map f : (Y, y0) ·→ (X,x0) , with
Y a connected type, can be lifted to a map f̃ : (Y, y0) ·→ (

∑
X F, (x0, u0)) if and only if

f∗(π1(Y, y0)) ⊂ pr1∗(π1(
∑
X F, (x0, u0))) . (1)

Here f∗ and pr1∗ denote the induced maps on the fundamental groups, not the shorthand
notation for transport as is common in HoTT.

In proving this statement, we found criterion (1) inconvenient to work with in HoTT. The
notation f∗(π1(Y, y0)), for example, conceals multiple truncations — a propositional-truncation
to define the image of a map and a set-truncation for π1 — which hinder access to the homo-
topical objects. We therefore proved that criterion (1) is equivalent to another condition, one
tailored to HoTT.

Lemma 2. Let F : X → Set with u0 : F (x0) be a pointed covering space over a
pointed type (X,x0) and let f : (Y, y0) ·→ (X,x0) be a pointed map. Then the criterion
f∗(π1(Y, y0)) ⊂ pr1∗(

∑
X F, (x0, u0)) is equivalent to the condition that for all loops p : y0 =Y y0

there exists a loop from u0 to u0 lying over f∗(p) in F , meaning that

transportF (f∗(p), u0) =F (x0) u0 .
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Together with the universal covering space constructed by Hou (Favonia) and Harper [HH18,
Thrm. 13], we use the alternative lifting criterion (Lemma 2) to show that connected, pointed
covering spaces are classified by subgroups of π1(X,x0) .

Theorem 3 (Classification, cf. [Hat01, first half of Thm. 1.38]). Let (X,x0) be a connected,
pointed type. Then there is an equivalence between pointed, connected covering spaces (F, u0)
over (X,x0) and subgroups of π1(X,x0) , obtained by associating to the covering space (F, u0)
the subgroup given by the predicate

|p|0 7→
(
transportF (p, u0) =F (x0) u0

)
,

meaning that |p|0 : π1(X,x0) belongs to the subgroup if there exists a loop from u0 to u0 lying
over p .

Canonical Change of Basepoint. In classical homotopy theory, a path p from a to b in
a topological space X induces a change-of-basepoint isomorphism between homotopy groups
πn(X, a) ∼= πn(X, b) . The isomorphism depends on the homotopy class of the path p . In the
case that X is simply-connected, the isomorphism can be considered canonical — there is only
one homotopy class of paths from a to b .

In HoTT, transport along a path p : a =X b also gives rise to an isomorphism πn(X, a) ∼=
πn(X, b) . Often we do not have access to an explicit path p : a =X b , but only know the
truncation ‖a =X b‖ to be inhabited. In these cases, we can use extension by weak constancy
[HH18, Lemma 6]: there exists a canonical isomorphism πn(X, a) ∼= πn(X, b) if transport along
all paths p, q : a =X b yields the same results, i.e.

transportπn(X,–)(p, –) = transportπn(X,–)(q, –) .

This is equivalent to stating that the fundamental group π1(X, a) acts trivially on the higher
homotopy groups πn(X, a) .

We prove the following statements for when the π1-action is trivial, and hence for when
there exists canonical change-of-basepoint isomorphisms.

Theorem 4. Let X be a type with designated point a : X .

(i) If X is simply-connected, then the action of π1(X, a) on πn(X, a) is trivial for all n ≥ 1;

(ii) The fundamental group π1(X, a) is abelian if and only if the action on itself is trivial;

(iii) If the type
∏
p,q : Ω(X,a) p

� q = q � p is merely inhabited, then the action of π1(X, a) on

πn(X, a) is trivial for all n ≥ 1 .

Results (i) and (ii) are easily shown, both in the classical theory and in HoTT. For result (iii),
we use the relationship between transport in consecutive loop spaces given below; it follows from
[Uni13, Thrm. 2.11.4] . Loop spaces that satisfy the assumption in (iii) are classically called
homotopy commutative as the commutativity may only hold up to homotopy; this is the default
setting in HoTT.

Lemma 5. Let p : a =X b and u : Ωn+1(X, a) , then in Ωn+1(X, b) we have that:

transportΩn+1(X,– )(p, u) = (apdrefln
( – )

(p))−1 � aptransportΩn(X, – )(p,– )(u) � apdrefln
( – )

(p) .

The term apdrefln
( – )

(p) can be thought of as a homotopy between the transported n-cell p∗(reflna)

at b and the constant n-cell reflnb at b .
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Choreographic programming is a paradigm for specifying concurrent systems (choreogra-
phies) based on message-passing where communications are written in an Alice-to-Bob notation.
Choreographies can be mechanically projected into distributed process-calculus implementations
guaranteed to be bisimilar to the original choreography. Such implementations can never suffer
from mismatched communications – more generally, they cannot reach a deadlocked state, as
the syntax of choreography language cannot express deadlocks.

Example 1 (From [8]). The following choreography models a scenario where Alice (a) buys a
book from a seller (s) routing the payment through her bank (b).

a.title → s; s.price → a; s.price → b;

if b.approves then b→ s[ok ]; b→ a[ok ]; s.book → a

else b→ s[ko]; b→ a[ko]; 0

First, Alice sends the title of the book to the seller, who quotes the price to both Alice and the
bank. The bank can then confirm the transaction by sending an acknowledgement to both Alice
and the seller (after which the latter sends the book), or send a cancellation to both parties.

This choreography can be projected into the following distributed protocol.

a ▷ s!title; s?; b&{ok : s?, ko : 0}
b ▷ s?; if approves then (s⊕ ok ; a⊕ ok) else (s⊕ ko; a⊕ ko)

s ▷ a?; a!price; b!price; b&{ok : a!book , ko : 0}

Alice’s protocol is: send a title to the seller and wait for a reply; then wait for either confirmation
from the bank, in which case the seller sends the book, or cancellation, in which case the protocol
ends. The protocol for the seller is similar. In turn, the bank initially waits for a message from
the seller, and then decides whether to send confirmation or cancellation to the seller and Alice.

The precise operational correspondence between choreographies and their projections (the
EPP Theorem) ensures that the choreography and the distributed protocol in the example above
behave in the same way. The proof of this result is complex, due to the high number of cases
that need to be considered and to the multitude of rules in the semantics of both choreography
and process languages. Such proofs are prone to errors when designed and checked by humans:
a previous attempt to formalise a higher-order process calculus [15] turned up a number of
problems in the original proofs [16]; similar issues have arisen in the field of multiparty session
types [20, Section 8.1], closely related to choreographic programming.

These issues motivated a subset of the present authors to formalise the theory of choreo-
graphic programming in the theorem prover Coq [8]. The result was a formalisation of a core
model for choreographic programming [6, 17], including the choreographic language and proof

∗This work was partially supported by Villum Fonden, grants 29518 and 50079, and Independent Research
Fund Denmark, grant 0135-00219.
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of its Turing completeness [10] and the target language for distributed implementations [6] to-
gether with a proof of the EPP Theorem [9]. In those works, we stated that our formalisation
was developed with an intent to be extendable and flexible. In this abstract, we report on
recent developments that build upon this formalisation, using it as an effective research tool,
thereby establishing its reusability and its usefulness.

Choreography amendment. Not all choreographies can be projected to distributed imple-
mentations, because of a realisability requirement known in the field as knowledge of choice [3].
Essentially, this condition means that every process whose behaviour depends on a conditional
expression evaluated by another process must be notified of this result. In the example above,
this is achieved by the label selection communications, e.g., b→ s[ok ].

Amendment is a transformation that makes every choreography projectable by adding such
label selections where needed. This procedure is described in [6]; however, the main correspon-
dence result between the semantics of the original and the amended choreography is wrong. The
error was only discovered while formalising the proof, and the counterexamples found with the
theorem prover’s help were essential to establishing and proving the correct correspondence [7].

Livelocks. Requiring knowledge of choice disallows choreographies where some participants
are inactive while others engage in a loop – for example, if Alice and the seller engage in
a negotiation until they agree on a price, after which the bank is notified of the amount to
transfer. A direct formalisation of this protocol as a choreography would not be projectable:
knowledge of choice would require the bank to be informed of the result of each iteration. This
constraint is unreasonable in practice.

In recent work [11], we have relaxed this requirement to allow for projecting several new
scenarios that occur in practice. The use of the theorem prover was again essential to detect
edge cases that were not found while making pen-and-paper proofs. This development also
supports the claim of modularity of the formalisation, as the proof of the EPP Theorem was
mostly unchanged as soon as the relevant lemmas had been generalised to the new notion of
projection.

Compilation. The distributed implementations generated by choreographic programming are
written in a mathematical process language. However, they are close enough to implementation
languages that they can be very directly translated to executable code.

We have implemented a toolchain that allows users to write choreographies, translates them
in Coq terms, applies the projection procedure extracted from the Coq formalisation to obtain
a distributed process implementation, and finally compiles this implementation into executable
code [5]. The final compilation step is done by a handwritten program, but since it is completely
homeomorphic (in the sense that each process action is modularly translated to Jolie code [18])
its correctness is easy to establish without requiring a full formalisation.

Related work. After our initial work, other groups have developed formalisations of chore-
ographic and related languages. Kalas [19] is a certified compiler written in HOL from a
choreographic language similar to ours to CakeML, with an asynchronous semantics but a more
restricted notion of projection. In particular, processes evaluating conditionals must immedi-
ately send selections to the processes that need them, while our language is more faithful to
the pen-and-paper literature on choreographies [1, 2, 13].

Pirouette [12] is a functional choreographic programming language formalised in Coq, sup-
porting asynchronous communication and higher-order functions. These capabilities come at
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the cost of hidden global synchronisations, while our language is fully decentralised, with all
synchronisations syntactically explicit.

Another related line of research is that of multiparty session types [13], which can be seen as
choreographies without computation – and therefore simpler. There are two available formal-
isations of multiparty session types [4, 14], which include a counterpart to the EPP theorem,
but are even more restrictive than Kalas in how they project conditionals.
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[11] Lúıs Cruz-Filipe, Fabrizio Montesi, and Robert R. Rasmussen. Keep me out of the loop: a more
flexible choreographic projection. Accepted for publication., 2023.

[12] Andrew K. Hirsch and Deepak Garg. Pirouette: higher-order typed functional choreographies.
Proc. ACM Program. Lang., 6(POPL):1–27, 2022.

[13] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. J.
ACM, 63(1):9, 2016. Also: POPL, pages 273–284, 2008.

[14] Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. Multiparty gv: Functional multiparty
session types with certified deadlock freedom. In Procs. ICFP, 2022. Accepted for publication.
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Abstract

Dynamic type theory is a model of type theory which is based on the potentialist’s
point of view. It has stages for each type and a refinement of type declarations, called
state declarations, defining input and output bounds.

1 Introduction

The starting point is to understand mathematics from the potential infinite without the concept
of an actual, i.e., completed infinity. The potential infinite is thereby seen as a dynamic concept,
as an extensible finite. Seen in this way, the approach leads to finitism. However, the concepts
are not tied to this finitistic view — no notion of finiteness is required for their development1.
The main idea is that extensibility is more fundamental than completeness. This unconditional
extensibility includes Dummett’s notion of indefinite extensibility, i.e., the phenomenon that
a reference to all objects of a concept leads to a new object of that concept. This is possible
because the interpretation of the universal quantifier uses a reflection principle.

A dynamic type theory naturally has a hierarchy of (Grothendieck) universes, since extensi-
bility and stages are built in from the very beginning. The approach is model theoretic, so there
are (almost — see Section 3 below) no restrictions in proof theory. This means that classical
logic is applicable as well as intuitionistic logic.

2 Sets and Systems

The basis for a dynamic model of type theory are stages and we assume that each type ϱ has
its own set Iϱ of stages. The sets Iϱ are endowed with an order ≤ that makes them directed
sets. From a consequent type theoretic perspective however, Iϱ will be a type ϱ∗ and indices i
will be terms of type ϱ∗. We complement the static interpretation of type ϱ with a system of

finite sets. Such a system is a family2 (Mi)i:ϱ∗ with finite setsMi and a relation
p7→ between

states ai′ ∈ Mi′ and ai ∈ Mi, indicating that ai is a predecessor of ai′ whenever ai′
p7→ ai.

3

The main point of a dynamic interpretation is that any reference to the interpretation of ϱ can
only be made by first referring to a stage i : ϱ∗ and then using states ai of objects inMi.

For instance, the index set of type nat (natural numbers), is N+ (set of positive natural
numbers). The interpretation of the universal quantifier over nat has to choose an index i ∈ N+

and use the set Ni := {0, . . . , i − 1} as its domain. The idea is to choose a sufficiently large
index as presented in [1] for first-order logic (based on [5] and [4]). In short, if the formula has
free variables x0, . . . , xn−1, then the assignment a is taken from Mi0 × · · · × Min−1

and the
index satisfies i≫ C := (i0, . . . , in−1), i.e., i is sufficiently large relative to C.

1The finitistic view, however, is philosophically most convincing (see e.g. [3]), in particular it avoids all
paradoxes of the infinite.

2We prefer i : ϱ∗ instead of i ∈ Iϱ because there is no assumption that the index set exists as a complete
set.

3For details see [2], also available at my homepage https://www.indefinitely-extensible.com.
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An important concept for a higher-order logic, and for type theory, is the notion of a limit
of a system, see [2]. The relation between the dynamic system and the static limit has two
readings, depending on one’s meta-level assumptions. If one assumes that actual infinite sets
exist, then the limit of a system is such an infinite set, e.g., the limit of (Ni)i:nat+ is the infinite
set N. From a consequent finitistic point of view, a limit is a sufficiently large state Nj of the
system itself that reflects all properties of such an ideal (but non-existent) infinite limit set N.
The concrete instance of such a finite set depends on (the stage of) the investigation.

3 Type Theoretic Concepts

We use types over arbitrary base types ι, including types nat and bool (Boolean values true and
false), and a function type constructor, so that types are ϱ ::= ι | ϱ→ ϱ. An interpretation of
a type and a term has two parts, a dynamic part and a static part, whereby the dynamic part
is a system and the static part is the limit of this system. To define the dynamic part of the
interpretation of λ-terms we need to restrict the type declarations to contexts Γ = (ϱ0, . . . , ϱn−1)
where variables are either positive or negative.4 They are defined by Typ+ ∋ ϱ+ ::= ι | (ϱ− →
ϱ+) and Typ− ∋ ϱ− ::= bool | (ϱ+ → ϱ−). Positive types correspond to objects, negative types to
properties on these objects. Terms then have a type in Typ1 ∋ ϱ1 ::= ι | (ϱ+ → ϱ1) | (ϱ− → ϱ1),
which are functions on objects and properties. Parallel to the usual type declaration there is
a refinement, called state declaration, defining the input and output bounds. Let i, j be stages
and C = (i0, . . . , in−1):

(Var)
Γ ⊢ xk : ϱk

(Var+)
j ≥ ik ϱk ∈ Typ+

C ⊢ xk : j
(Var−)

j ≤ ik ϱk ∈ Typ−
C ⊢ xk : j

(App)
Γ ⊢ r : ϱ→ σ Γ ⊢ s : ϱ

Γ ⊢ rs : σ
(App)

C ⊢ r : i→ j C ⊢ s : i

C ⊢ rs : j

(Lam)
Γϱ ⊢ r : σ

Γ ⊢ λxϱnr : ϱ→ σ
(Lam)

Ci ⊢ r : j

C ⊢ λxϱnr : i→ j

This fragment of simple type theory allows term constructors c : (σ0, . . . , σm−1) → σ for
types σ0, . . . , σm−1, σ ∈ Typ1, including universal quantifier ∀ϱ : (ϱ→ bool)→ bool. Let ΣI be
a refinement of a signature Σ for states, then the rules are (here formulated only for the state
declaration):

(Cst)
c : (i0, . . . , im−1)→ i ∈ ΣI C ⊢ r0 : i0 . . . C ⊢ rm−1 : im−1 [ Conditions ]

C ⊢ cr0 . . . rm−1 : i

The central theorem is a reflection principle stating that all objects and operations (i.e., all
terms) have an interpretation in the limit as well as in some state of the system, reflecting the
limit element. From the perspective that the limit is an infinite set, this means that every object
and operation in the (infinite) limit has a counterpart in some (finite) state of the system. From
a consequent finitistic perspective this infinite limit set is an indefinitely large (or sufficiently
large) finite set.

4The reason is that totality of higher-order functionals is challenging in this approach.
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Background. Martin-Löf type theory (MLTT) was extended by Setzer [10, 11] with a large
universe type called a Mahlo universe, in order to provide MLTT with an analogue of some
large cardinal property. A Mahlo universe V has a reflection property similar to the one of
weakly Mahlo cardinals: V is closed under any function f on families of small types in V, i.e.,
any function f of type Σ(x:V)(TVx → V) → Σ(x:V)(TVx → V) with the decoding function
TV : V → Set for V.1 The resulting system MLM is thus an instance of constructive systems
extended with an analogue of some large set or some large set itself. Setzer’s purpose of
introducing MLM is to obtain an extension of MLTT whose proof-theoretic ordinal is slightly
greater than the one of Kripke-Platek set theory with one recursively Mahlo ordinal, where
proof-theoretic ordinals of systems enable to measure the strength of a system.

Another instance of constructive systems extended with some large set was formulated in
the context of Aczel’s constructive set theory CZF [1, 2, 3]. Rathjen, Griffor and Palmgren
[9] introduced the system CZFπ, which is an extension of CZF with the existence of Mahlo’s
inaccessible sets of all transfinite orders [7]. The main purpose of introducing CZFπ is a proof-
theoretic one as well: Rathjen, Griffor and Palmgren also introduced an extension of MLTT
called MLQ, and determined its proof-theoretic ordinal by verifying that CZFπ is interpretable
in MLQ. Though Rathjen [8] formulated another extension of CZF with the existence of a
Mahlo set and showed that this extension is interpretable in MLM, it is not known whether
CZFπ is interpretable in MLM. Specifically, it is an open question how to interpret the
transfinite hierarchy of inaccessible sets in CZFπ by using the reflection property of MLM.

Aim and Approach. We, as a step towards an interpretation of CZFπ in MLM, show
that the hierarchy of the types Vα(a,f) in Rathjen-Griffor-Palmgren’s interpretation of CZFπ
can be defined by means of the Mahlo universe V in MLM. This hierarchy was defined as
the type-theoretic counterpart of α-inaccessible sets in [9], and its construction was provided
by the two types M and Q in MLQ. Roughly speaking, Q is an inductive type of codes for
operators which gives universes closed under universe operators constructed previously, while
M is a universe closed under operators in Q.

Our idea for defining Vα(a,f) in MLM is to replace M with the Mahlo universe V, and then

formulate a higher-order universe operator uM which is able to take a family (b, g) of universe
operators constructed previously as an argument. The type of uM(b, g) is Σ(x:V)(TVx→ V)→
Σ(x:V)(TVx→ V), and we use the reflection property of V with respect to uM(b, g) to construct
the hierarchy of the types Vα(a,f).

The reflection property of V can be informally explained as follows. Put Fam(V) :=
Σ(x:V)(TVx → V). The Mahlo universe type V : Set reflects any function on families of small

types in V: for any f : Fam(V)→ Fam(V), there are a subuniverse Uf of V and its code Ûf in

V with the decoding function T̂f : TV Ûf → V such that Uf is closed under f and TV Ûf = Uf

1Below we use the logical framework adopted in the proof assistant Agda.
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holds. The universe operator u above a family of small types in V is a typical example of such
an f : Fam(V) → Fam(V): for any (b, g) : Fam(V), u (b, g) = (Û(b,g), T̂(b,g)) is the pair of a

universe Û(b,g) : V and its decoding function T̂(b,g) : U(b,g) → V such that U(b,g) has codes of
b and g c for any c : TVb. Then, the reflection property of V gives a subuniverse of V being
closed under the universe construction by u. Of course, this does not exhaust the largeness of
a Mahlo universe, since V has such a subuniverse for any function on families of small types.

We define the higher-order universe operator uM mentioned above as follows. We first
stipulate the type O of first-order operators and the type Fam(O) of families of first-order
operators as O := Fam(V) → Fam(V) and Fam(O) := Σ(x:V)TVx → O, respectively. Let
(z, v) : Fam(O) and (x, y) : Fam(V) be given. Next, a function

h : Π(w:Fam(V))

(
((N1 + TVx) + TVz) + Σ(w′:TVz)TVp1(v w′ w)→ V

)

is defined by

h w (i(i(i x1))) = x with x1 : N1, (1)

h w (i(i(j x2))) = y x2 with x2 : TVx, (2)

h w (i(j y1)) = p1(v y1 w) with y1 : TVz, (3)

h w (j (y1, z1)) = p2(v y1 w) z1 with y1 : TVz and z1 : TVp1(v y1 w), (4)

where p1 (resp. p2) is the left projection (resp. the right projection) for pair types, and i (resp.
j) is the left injection (resp. the right injection) for sum types. Put fM[z, v, x, y] : O as

fM[z, v, x, y] := λw.(((N̂1V +̂V x) +̂V z) +̂V Σ̂V(z, (w′)p1(v w′ w)), h w).

We then define uM : Fam(O) → O as uM (z, v) (x, y) := (ÛfM[z,v,x,y], T̂fM[z,v,x,y]) by reflecting

fM[z, v, x, y] in V. This reflection gives a subuniverse ÛfM[z,v,x,y] closed under fM[z, v, x, y]: in

particular, ÛfM[z,v,x,y] is closed under each of first-order operators in (z, v) : Fam(O). Typical
examples of such operators are universe operators constructed previously. Note that, for any
w : Fam(V), we can extract from fM[z, v, x, y] w a family of small types which is the result of
applying an operator in (z, v) to w, as shown by (3) and (4) above.

The hierarchy of the types Vα(a,f) is constructed by iterating the operator uM along Aczel’s
iterative sets. In MLM, the type V of iterative sets is defined as V := W(x:V)TVx with a stan-
dard definition of index : V→ V and pred : Π(x:V)TV(indexx)→ V such that index(sup af) =
a and pred (sup af) = f hold. We then prove the transfinite induction on the transitive closure
αtc of α : V, which is presupposed in [9]: tcTI : Π(α:V)(Π(x:TV(index αtc))F (predαtcx)→ F α)→
Π(α:V)F α. We define the function Φ : V→ O as Φα = tcTI (λβ.λx.uM (index βtc, x)) α by this

induction principle. Roughly speaking, Φα means the iteration of uM along α. Finally, for any
a : V and f : TVa→ V, we define the α-th subuniverseMα

(a,f) of V and the type Vα(a,f) of α-th it-

erative sets onMα
(a,f) as follows: Mα

(a,f) := TV(p1(Φα(a, f))), Tα(a,f) := λx.TV(p2(Φα(a, f))x),
Vα(a,f) := W(x:Mα

(a,f)
)T

α
(a,f)x. We formalised these definitions in Agda, using the external Mahlo

universe introduced by [5].2

The next research direction is to formulate an interpretation of CZFπ in MLM based on our
construction of the types of α-iterative sets. Another future research is to see our construction
from the viewpoint of recent type-theoretic approaches to ordinals in the context of homotopy
type theory [6, 4]. In [6], the authors discuss the conception of ordinals as Brouwer trees, which
have several similarities with iterative sets. In [4], the authors discuss a refinement of Aczel’s
interpretation of CZF in MLTT.

2https://github.com/takahashi-yt/czf-in-mahlo
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Motivation The development of category theory inside type theory has a long history, and
many libraries for proof assistants such as Agda or Coq contain results on categories [4, 9, 10,
11, 12, 14]. In a type theory without UIP, in particular in HoTT, the theory of 1-categories is
often not applicable for the study of types and more general (i.e., higher) notions of categories
are required. For example, the universe of types and functions is adequately described as an
(∞, 1)-category. Unsurprisingly, already writing down the definition of such a higher category is
involved and a careful approach to organising the huge number of components is needed.1

One approach to defining higher categories is to first consider the composition structure
(i.e., morphisms, composition, associativity, Mac Lane’s pentagon coherence, . . . ). This leads
to a notion of higher semicategory. We then want to describe the higher categories as those
higher semicategories that happen to have identities. If we can formulate “having identities” as
a propositional property, the higher categories become a subtype of the higher semicategories.

In this talk, we present several different (equivalent) definitions of the property “having iden-
tities”. Instead of higher categories, we work with a 1-categorical notion of semicategory, a “wild”
(untruncated) and a priori ill-behaved concept that generalises both “honest” semicategories
(with set-truncated morphism types) and (∞, 1)-semicategories (with all coherences). The fact
that this is possible is very fortunate as it simplifies the situation significantly compared to
the ∞-categorical setting, but it of course leads to the question in which sense our identity
structures are “correct” for (∞, 1)-categories. We discuss this question at the end.

Notions of identities in wild semicategories A wild semicategory is a tuple (Ob, hom, ◦, α)
where α witnesses associativity. The attribute wild indicates that we do not place a truncation
condition on the family hom.

Naive identities A direct way to define an identity structure is to ask for a function
id : Πx:Ob hom(x, x) together with identity laws λf : idy ◦f = f and ρf : f ◦ idx = f . Since
hom is not required to be a family of sets, this formulation of having naive identities is not a
proposition and it does not automatically satisfy the coherences that one would expect of an
identity in a higher category, such as λid = ρid. We write NaIdx for the type of triples (idx, λ, ρ).

Idempotent equivalences A less direct but more well-behaved definition of an identity
structure is to ask for an idempotent equivalence on each object ([7]; cf. the weak units of [5]).
Here, a morphism f is an equivalence if both pre- and post-composition with f is an equivalence
of types in the usual (HoTT) sense and we write eqv(x, y) for the subtype of hom(x, y) that
are equivalences. A morphism f : hom(x, x) is idempotent if f ◦ f = f . Clearly, we would
expect an identity morphism to be both an equivalence and idempotent, and it turns out that
this expectation can be reversed: an idempotent equivalence is always a naive identity in the
above sense. This notion is well-behaved since the type IdemEqv :≡ Πx:ObΣi:eqv(x,x)(i ◦ i = i) is
a proposition [7].

1It is a well-known open question, and one of the major unsolved problems of the field, whether homotopy
type theory [13] is expressive enough to formulate the definition of an (∞, 1)-category such that the universe is
an instance. The difficulty is to find a way (or determine that there is no way) to encode the infinite number of
morphism levels. 2LTT [1] is a setting in which this can be done. The current abstract is not on this issue.
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Harpaz’s identities Following an idea by Harpaz [3], we can ask that there is an equiv-
alence out of each object x, that is, Σy:Ob eqv(x, y). If we want this to be a proposition, we
can truncate (i.e., replace Σy by ∃y); this variation is still sufficiently strong to derive a naive
identity structure. Alternatively, we can ask for the type of outgoing equivalences (the type of
tuples (y, f, e)) to be contractible. It turns out that this version defines univalent identities [2].
We write HarpazId :≡ Πx:Ob∃y:Ob eqv(x, y) and uHarpazId :≡ Πx:Ob isContr(Σy:Ob eqv(x, y)).

Identities via (co)slices In category theory, the identity on x is the terminal (resp. initial)
object in the slice over (resp. the coslice under) x. Reversing this, we get yet another method
to characterise an identity structure in semicategories. Note that wild semicategories are not
sufficiently well-behaved to construct slices or coslices as associativity cannot be derived (as
explained in e.g. [7]). However, sufficient structure can be constructed to define what it means
to be initial or terminal. After unfolding the definition, this leads to the simple definition
SliceId :≡ Πx:Ob∥eqv(x, x)∥.

Equivalence of the above notions For a semicategory with set-truncated families of
morphisms, a naive identity structure is unique if it exists; in other words, NaId is a proposition.
This is not the case for a wild semicategory, but we could explicitly truncate to get a proposition
∥NaId∥. By combining results from several papers we can then show:

Theorem 1. For a given wild semicategory, the four types Πx:Ob∥NaIdx∥, IdemEqv, HarpazId,
SliceId are equivalent propositions.

Proof. Three of the types are explicitly constructed to be propositions. In contrast, it is not
automatic that IdemEqv is a proposition: While being an equivalence is a proposition, the type
of equivalences is in general not a proposition, and neither is the statement that a morphism is
idempotent. The result was shown by the third-named author in [7] and the strategy is to show
that, if an identity-like morphism is given, then every idempotent equivalence has to be equal to
it. We refer to the formalisation2 for the details.

• Πx:Ob∥NaIdx∥ ↔ IdemEqv [7]: Naive identities are idempotent equivalences and vice versa.
• HarpazId → IdemEqv: This uses an insight of Harpaz [3] in a type-theoretic setting. Given

an equivalence f : hom(x, y), we can apply the inverse of (f ◦ _) to f itself, and the result
is an idempotent equivalence.

• Finally, IdemEqv → SliceId → HarpazId is easy.

Discussion One approach to defining (∞, 1)-semicategories in a type-theoretic setting is to
consider certain type-valued presheaves over the semi-simplex category ∆+ [1, 2]. Morally, an
identity structure corresponds to the maps present in the simplex category ∆ but not in ∆+.
Unfortunately, the strategy of defining strict type-valued presheaves via type families only works
for direct categories, which ∆ is not. Approaches that include an identity structure include the
use of a direct replacement of ∆ [6, 8] or homotopy coherent nerves [8]; these structures consist
of infinite towers of coherence data.

An (∞, 1)-semicategory C has an underlying wild semicategory C1. If C has an identity
structure given by an infinite tower of coherence data, then C1 is trivially equipped with naive
identities and thus any of the other discussed identity structures (apart from uHarpazId, which
is stronger). We conjecture that the converse holds as well; special cases of this expectation are
verified in [2]. This conjecture would give us an easy way to construct the complete tower of
coherences by checking any of the very easy conditions discussed above.

2Formalisation — browsable html version: joshchen.io/agda/semicategories-with-identities/; Agda
source code: github.com/jaycech3n/semicategories-with-identities

2

86



Categories as Semicategories with Identities Chen, de Jong, Kraus, and Pradal

References
[1] Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler. Two-level type theory and

applications. arXiv[cs.LO]:1705.03307, 2019.
[2] Paolo Capriotti and Nicolai Kraus. Univalent higher categories via complete semi-Segal types.

Proceedings of the ACM on Programming Languages, 2(POPL’18):44:1–44:29, 2017. Full version
available at arXiv:1707.03693.

[3] Yonatan Harpaz. Quasi-unital ∞-categories. Algebraic & Geometric Topology, 15(4):2303–2381,
2015. doi:10.2140/agt.2015.15.2303.

[4] Jason Z. S. Hu and Jacques Carette. Agda-Categories: Category theory library for Agda.
doi:10.1145/3410272, 2021.

[5] André Joyal and Joachim Kock. Coherence for weak units. Documenta Mathematica, 18:71–110,
2013.

[6] Joachim Kock. Weak identity arrows in higher categories. International Mathematics Research
Papers, 2006:69163, 2006. doi:10.1155/IMRP/2006/69163.

[7] Nicolai Kraus. Internal ∞-categorical models of dependent type theory : Towards 2LTT eating
HoTT. In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
1–14, 2021. doi:10.1109/LICS52264.2021.9470667.

[8] Nicolai Kraus and Christian Sattler. Space-valued diagrams, type-theoretically (extended abstract).
arXiv[math.LO]:1704.04543, 2017.

[9] Amélia Liao, Astra Kolomatskaia, and Reed Mullanix. 1lab. Available at https://1lab.dev/.
[10] The mathlib Community. The Lean mathematical library. 9th ACM SIGPLAN In-

ternational Conference on Certified Programs and Proofs (CCP’20), pages 367–381, 2020.
doi:10.1145/3372885.3373824.

[11] Anders Mörtberg, Evan Cavallo, Felix Cherubini, Max Zeuner, Alex Ljungström, Andrea Vezzosi,
et al. A standard library for Cubical Agda. Available at https://github.com/agda/cubical, 2018.

[12] Marco Perone et al. Idris category theory. Available at https://github.com/statebox/idris-ct.
[13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-

matics. http://homotopytypetheory.org/book/, 2013.
[14] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath — a computer-checked

library of univalent mathematics. Available at http://unimath.org.

3

87



New Observations on the Constructive Content of

First-Order Completeness Theorems

Hugo Herbelin1 and Dominik Kirst2,3
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Abstract

We report on some new observations regarding the constructive reverse mathematics of
first-order completeness theorems. When conducted in a constructive type theory such as
the calculus of inductive constructions (CIC), many different formulations of completeness
can be distinguished and analysed regarding their sufficient and necessary non-constructive
assumptions. As the main new result, we identify a principle we dub WLEMS at the
intersection of double-negation shift and weak excluded middle, exactly capturing the non-
constructivity needed for object-level disjunctions. The observations reported here are part
of an ongoing general attempt at a systematic classification of the independent ingredients
contributing to the non-constructivity of completeness theorems.

Background Completeness of a logic states that every formula ϕ semantically entailed by
a (possibly infinite) context Γ, denoted by Γ � ϕ, also admits a syntactical derivation via the
rules of a suitable deduction calculus, denoted by Γ ` ϕ. After the discovery that Gödel’s
completeness theorem of first-order logic [5] relies on Markov’s principle (MP) [11], this first-
order completeness has been of ongoing interest for the programmes of reverse mathematics [4,
14] and constructive reverse mathematics [9].

Seeking to pin down the exact (non-constructive) assumptions required by the analysed
theorems, these programmes are carried out in purposefully weak (constructive) logical systems
that allow fine distinctions of logical strength. Among the known results regarding completeness
are, besides the mentioned connection to MP, equivalences to the weak König’s lemma [15], the
weak fan theorem [12], as well as the Boolean prime ideal theorem [6].

Formulations of Completeness Working in CIC [2, 13] and modelling first-order logic in
an established way [10], we distinguish the following forms of completeness:

• Completeness: ∀ϕ,Γ.Γ � ϕ→ Γ ` ϕ
• Quasi-Completeness: ∀ϕ,Γ.Γ � ϕ→ ¬¬(Γ ` ϕ)

• Model Existence: ∀ϕ,Γ.Γ 6` ϕ→ ∃M.M � Γ ∧M 6� ϕ
Usual (Henkin-style) proofs establish model existence first, from which then only quasi-

completeness follows constructively, given its additional double negation. Next to these forms
of completeness, there are four other dimension contributing to the (non)-constructivity, namely

• The complexity of the context (e.g., finite, decidable, enumerable, arbitrary),

• The cardinality of the signature (e.g., countable, uncountable),

• The syntax fragment (e.g., propositional, minimal, negative, full), and

• The representation of the semantics (e.g., Boolean, decidable, propositional).

In this abstract we discuss the cases of quasi-completeness and model existence for arbitrary
contexts over a countable signature, regarding the full syntax (including the critical case of
disjunctions) and propositional semantics, which was left open in previous work [8, 3, 7].
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Main Observations For the mentioned target formulation of completeness we identify the
following principle we call weak excluded middle shift (WLEMS):1

∀p : N→ P.¬¬(∀n.¬p n ∨ ¬¬p n)

Note that WLEMS follows both from double-negation shift (DNS),2 as this would allow to
push the outer double negation through the universal quantifier, and from weak excluded middle
(WLEM),3 as this allows the inner classical case distinctions. Both DNS and WLEM give rise to
proofs of quasi-completeness themselves, however subsumed by the following main observation:

Theorem 1. Quasi-completeness (for the said setting) is equivalent to WLEMS.

Sketch. First assume Γ � ϕ and Γ 6` ϕ for a contradiction. The latter allows to constructively
extend Γ to ∆ with several closure properties (neglecting the usual treatment of quantifiers):

• Relative Consistency: ∆ 6` ϕ
• Deductive Closure: ∀ψ.∆ ` ψ → ψ ∈ ∆

• Stability: ∀ψ.¬¬(ψ ∈ ∆)→ ψ ∈ ∆

• Quasi-Primeness: ∀ψ,ψ′. ψ∨̇ψ′ ∈ ∆→ ¬¬(ψ ∈ ∆ ∨ ψ′ ∈ ∆)

Combining WLEMS and stability, we can pull the double negation in quasi-primeness to the
front and, given the goal to be deriving a contradiction, obtain actual primeness, which is
quasi-primeness without any double negations. In a usual completeness proof, primeness is
exactly the property needed to verify that the syntactic model M∆ arising from ∆ satisfies
both M∆ � Γ and M∆ 6� ϕ, in contradiction to the assumption Γ � ϕ.

Conversely given p : N→ P with ¬(∀n.¬p n ∨ ¬¬p n) for a contradiction, we consider

Γ := {Pn∨̇¬̇Pn | n : N} ∪ {Pn | p n} ∪ {¬̇Pn | ¬p n}
using countably many propositional variables Pn. Applying quasi completeness for ϕ := ⊥̇, we
are left to show that Γ � ⊥̇ and that Γ is consistent. The latter is possible using a suitable
model and soundness, the former boils down to assuming a model M with M � Γ and then
showing ∀n.¬p n ∨ ¬¬p n by inspecting the choices M � Pn∨̇¬̇Pn made by the model.

Complementing the previous equivalence, we also observe:

Theorem 2. Model existence (for the said setting) is equivalent to WLEM.

Sketch. WLEM is enough to show that stable quasi-prime theories are actually prime, yielding
model existence as above. Conversely given p : P, model existence for the consistent context
Γ := {P0∨̇¬̇P0} ∪ {P0 | p} ∪ {¬̇P0 | ¬p} yields the desired case distinction ¬p ∨ ¬¬p.
Outlook First, although presented here for classical first-order logic, we expect that the
same results hold for intuitionistic first-order logic. Actually, we suspect that the character-
isation of disjunction using WLEMS and WLEM is universal enough to apply also to other
logics like modal logic or bi-intuitionistic logic. Secondly, it would be desirable to develop an
abstract framework for completeness proofs, orthogonalising the different dimensions of non-
constructivity and generalising over the concrete specifics of the analysed logic. Thirdly, we
want to investigate the exact correlation of WLEMS and formulations of the weak fan theorem,
especially regarding Berger’s decomposition of the latter [1].

1Equivalent to disjunctive double-negation shift : ∀pq : N → P. (∀n.¬¬(¬p n ∨ ¬q n)) → ¬¬(∀n.¬p n ∨ ¬q n)
and mentioned in more general form as M° quantifying over arbitrary domains by Umezawa [16].

2∀X. ∀p : X → P. (∀x.¬¬p x) → ¬¬(∀x. p x)
3∀p : P.¬p ∨ ¬¬p
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1 Introduction

Differential dynamic logic (dL) [11, 12, 13, 14] is a formal framework to specify and reason about
hybrid programs (HPs). The core of dL is a proof calculus that contains a collection of axioms
and rules for the rigorous verification of properties of HPs. This calculus is implemented in
the KeYmaera X1 theorem prover which has been used for formal verification of several cyber-
physical systems [4, 8, 6, 2, 1, 3, 7, 9]. Recently, dL has been embedded within the theorem prover
Prototype Verification System (PVS) [10] resulting in the tool Plaidypvs2. The integration of dL
into PVS expands its expressive power; user defined functions, such as trigonometric and other
transcendental functions, can be used inside the dL framework, and meta-reasoning about HPs
can be performed, including reasoning about entire classes of HPs, specified using dependent
types in PVS.

One limitation of dL, KeYmaera X, and Plaidypvs is that they can only reason on the in-
put/output semantics of an HP. Nevertheless, it is often the case that the correctness of an HP
depends on the intermediate states that it can reach during its executions. For example, guar-
anteeing the position of an aircraft stays within a geofenced region. The differential temporal
dynamic logic (dTL2) has been introduced in [5] to extend dL with temporal logic operators
and reason about all the states reachable during the execution of an HP.

This paper presents a work in progress focusing on embedding dTL2 in PVS as an extension
of Plaidypvs. Plaidypvs is expanded with the formalization of a trace semantics for HPs, the
definition of the LTL temporal operators eventually and globally, and the implementation of
the proof calculus for dTL2. This new embedding has the same capabilities as Plaidypvs, which
allows user defined functions and meta-reasoning of properties of HPs.

2 Embedding dTL2 in PVS

HPs combine discrete programs and continuous evolutions and are defined by the syntax

α ::= x := θ | x′ := θ&P | ?P | x := ∗ &P | α;α | α ∪ α | α∗

where x and x′ are variables, θ is a real expression, and P is a Boolean expression. The
statement x := θ denotes a discrete assignment, x′ := θ&P models the continuous first order
differential equation defined by θ that satisfies P , ?P tests if P is satisfied, and x := ∗&P
assigns to x an arbitrary real value r such that P (r) holds. HPs can be combined through
sequential execution (α1;α2), nondeterministic choice (α1 ∪ α2), and nondeterministic finite
repetition (α∗

1).

1https://keymaerax.org
2Plaidypvs is part of the NASA PVS library available at https://github.com/nasa/pvslib/tree/master/dL.
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Real and Boolean expressions are shallowly embedded in PVS. Given a state (or environ-
ment) in S which maps variables into R, a real expression has type [S → R], while a Boolean
expression has type [S → B] where B is the Boolean domain. This type of embedding is more
general and easily extendable than the deep embedding where each operator must be defined
with a dedicated datatype. Additionally, it allows interpretation of the operators directly in
the logic of PVS, facilitating the task of writing the proofs.

The semantics of an HP is defined as a set of traces. In PVS, a trace is defined as a function
σ : N× R→ S. A state σ(i, r) ∈ S denotes the state in trace σ occurring at the discrete step i
and at time r. In the following, let σi denote σ(i, 0) which is defined on the interval [0, 0] and
is used to model discrete steps. The trace semantics is defined as a relation τ(α, t) that holds
when a trace t belongs to the semantics of an HP α. For instance, it holds that τ(x := θ, σ0σ1)
when σ1 = σ0[x/θ] and τ(x′ := θ&P, σ′) where σ′ is a state flow of order one solution of θ
defined on [0, r] such that for all t ∈ [0, r], σ(t) satisfies P .

There are two kinds of formulas in dTL2: state formulas (ϕ) that are interpreted over a
single state and trace formulas (π) that are interpreted over a trace:

ϕ ::= θ1 ≥ θ2 | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀x ϕ | ∃x ϕ | [α]π | ⟨α⟩π
π ::= ϕ | ¬π | 2π | ♢π

where θ1 and θ2 are real expressions. The run quantification statement [α]P asserts that every
run of α ends by satisfying P . Similarly, ⟨α⟩P asserts that there exists a run of α where the
final state satisfies P . The operators 2, globally, and ♢, eventually, are defined in the typical
way according to LTL with the restriction that they can be nested at most twice, i.e., the
only combinations allowed are 2♢ and ♢2. While this can look like a stringent limitation, the
combination of the LTL temporal operators with the dL run quantification allows reasoning on
the reachable states of different computational paths.

Each proof rule of dTL2 presented in [5] is specified as a lemma and proven correct in
PVS. The non-temporal rules that reason on state formulas are inherited from Plaidypvs. For
instance, the rules for proving a globally statement on all the runs of an assignment and a
sequential composition are the following.

[x := θ](ϕ)

[x := θ](2ϕ)

[α1][α2](2ϕ)

[α1;α2](2ϕ)

A lemma that encodes a desired rule can be instantiated in the PVS proof environment to
prove a given property for an HP. In the future, proof strategies automating this process will
be developed.

3 Conclusions

This extended abstract presents a work in progress for the implementation of the dTL2 logic in
PVS. Upon the completion of this work, the formalization of dTL2 will be added to the Plaidypvs
tool and made available in the NASA PVS library. The combination of LTL operators with dL
allows for reasoning about the intermediate states on different computational paths of an HP,
enabling an interesting fragment of CTL∗. The dTL2 embedding in PVS is implemented as a
mixture of deep and shallow embeddings enabling user defined functions, and meta-reasoning
about HPs using dependent types in PVS. To the best of the authors’ knowledge this is the
first implementation of dTL2.
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Abstract
In proof assistants based on dependently-typed languages, record types have been used

as interfaces for abstraction bundling some objects, including mathematical structures.
However, these record types introduce some indirections, namely, constructions and de-
structions of records, which can be a source of efficiency and intelligibility issues in trans-
lations such as extraction and parametricity translation. We propose a translation from
Coq to Coq that expands record types and eliminates these indirections.

Structures as records In proof assistants based on dependently-typed languages, record
types [6] have been used as interfaces for abstraction that bundle some objects. For example, the
following record type written in Coq [13], which is a simplified version of the eqType structure
in the MathComp library [17], represents a type eq_type equipped with a comparison function
eq_op and a proof eqP that eq_op x y is true if and only if x and y are propositionally equal.

1 Structure eqType := EqPack {
2 eq_sort :> Type;
3 eq_op : eq_sort -> eq_sort -> bool;
4 eqP : forall x y : eq_sort, reflect (x = y) (eq_op x y) }.

We can define a function that works generically for any instance of the above record type. As
an example, we define mem_seq that determines whether a list includes a given element by using
eq_op for comparison, and undup that eliminates duplications in a given list.

1 Definition mem_seq (T : eqType) (x : eq_sort T) :=
2 fix rec (ys : seq (eq_sort T)) : bool :=
3 if ys is y :: ys then eq_op x y || rec ys else false.
4
5 Definition undup (T : eqType) :=
6 fix rec (xs : seq (eq_sort T)) : seq (eq_sort T) :=
7 if xs is x :: xs then
8 let xs' := rec xs in if mem_seq x xs' then xs' else x :: xs'
9 else [::].

where eq_sort, intentionally made explicit, can be omitted thanks to the implicit coercion
mechanism [14].

This approach of abstraction, in combination with mechanisms to automatically infer record
instances [5, 9, 15, 16], has been extensively used to define and reason about mathematical
structures such as groups, rings, and fields, that may form a complex inheritance hierarchy [1,
2, 10, 18].

Indirections The use of record types as interfaces for abstraction introduces some indirections
in raw terms, namely, construction and destruction of records. Furthermore, an instance of a
richer structure, e.g., a field, sometimes has to be repackaged as an instance of a poorer structure,
e.g., a ring, to deal with structure inheritance, e.g., the fact that any field form a ring [1, Section
2.4]. While these indirections are necessary ingredients to enable structure inference and most
of them are made implicit in the user-facing syntax, they can be a problem in translations that
operate on raw terms, such as program extraction [4] and parametricity translation [3]. For
example, mem_seq and undup above are extracted to the following OCaml program.
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1 type eq_sort = Obj.t
2
3 (** val mem_seq : eqType -> eq_sort -> eq_sort list -> bool **)
4 let rec mem_seq t x = function
5 | [] -> false
6 | y :: ys0 -> (||) (t.eq_op x y) (mem_seq t x ys0)
7
8 (** val undup : eqType -> eq_sort list -> eq_sort list **)
9 let rec undup t = function

10 | [] -> []
11 | x :: xs0 -> let xs' = undup t xs0 in if mem_seq t x xs' then xs' else x :: xs'

Since the type of elements of the list is bundled in the first parameter of type eqType, it is
translated to Obj.t, which has to be coerced by Obj.magic when these definitions are specialized
to a concrete eqType instance. Therefore, they do not have polymorphic types one may expect.
Moreover, mem_seq has to access to the comparison function through the record projection
eq_op, which is a source of inefficiencies particularly in the case involving deeply nested records
and inheritance [7, Section 5.1].

Record expansion translation We propose a translation from Coq to Coq that eliminates
the indirection issues by expanding a record type to its fields. For example, T of type eqType
in our example can be expanded to the carrier type eq_sort, the function eq_op, and the
proof eqP. Record projections applied to an expanded record can then be reduced to the
corresponding field. Since the proof eqP is unused in mem_seq and undup, it can be removed.

1 Definition mem_seq' (T : Type) (eq_op : T -> T -> bool) (x : T) :=
2 fix rec (ys : seq T) : bool :=
3 if ys is y :: ys then eq_op x y || rec ys else false.
4
5 Definition undup' (T : Type) (eq_op : T -> T -> bool) :=
6 fix rec (xs : seq T) : seq T :=
7 if xs is x :: xs then
8 let xs' := rec xs in if mem_seq' eq_op x xs' then xs' else x :: xs'
9 else [::].

In general, an abstraction over a record type has to be expanded to abstractions over its fields.
On the other hand, a constant that returns a record instance has to be expanded to several
constants corresponding to each field.

As a result, the extracted OCaml functions now have the expected polymorphic type, and
the use of the record projection eq_op disappears.

1 (** val mem_seq' : ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 list -> bool **)
2 let rec mem_seq' eq_op x = function
3 | [] -> false
4 | y :: ys0 -> (||) (eq_op x y) (mem_seq' eq_op x ys0)
5
6 (** val undup' : ('a1 -> 'a1 -> bool) -> 'a1 list -> 'a1 list **)
7 let rec undup' eq_op = function
8 | [] -> []
9 | x :: xs0 -> let xs' = undup' eq_op xs0 in if mem_seq' eq_op x xs' then xs' else x :: xs'

We are currently working on an implementation of this translation in Coq-Elpi [11]. We
plan to produce proofs certifying each translation since the translation itself will not be verified,
while its reimplementation in MetaCoq [8] would allow us to verify the translation itself. In
many cases, such a proof, e.g., that the translated definition undup' is equal to undup, can be
done by reflexivity. However, it is crucial that the record to expand does not appear as an
argument of fixpoint functions in the definition.

1 Lemma undupE T eq_op eqP : @undup (@EqPack T eq_op eqP) = @undup' T eq_op.
2 Proof. reflexivity. Qed.
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Université Paris-Saclay, INRIA project Deducteam,
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Introduction Category Theory is a very active domain in both computer science and math-
ematics research, with applications from algebraic geometry to programming languages design.
Many attempts to formalize parts of this field in proof assistants have been made [1, 5, 6, 11].
They usually suffer from common drawbacks, two of which are :

• Reasoning is often done modulo associativity and unitality (and more generally modulo
structural laws that depends on the specific categories of interest). As of now, most tactics
do not handle such properties, resulting in user to have to do a lot of bureaucratic work
to make sure the parentheses are at the right place before rewriting.

• One of the aspects that made category theory so attractive is that it enabled reasoning
about equational systems using an intuitive graphical representation based on graphs,
usually called categorical diagrams. The main idea is to represent morphisms as arrows
between their domains and codomains, laid out on the plane. Equalities are then faces
between parallel paths on the graphs. Those faces are called commutative, and one can
reason about the equalities using visually intuitive rules. This is fundamentally hard to
replicate in a text-based proof assistant.

We propose an attempt to alleviate those two, particularly by focusing on the second point.
In practice, multiple kinds of graphical calculi exists for specific kind of categories, such as
string diagrams for monoidal categories. This work restrict itself to categorical diagrams.

The presentation as graphs has the advantage of factoring out the associativity, since com-
position are now path in the graph. Our approach thus mostly abstracts away associativity and
unitality questions.

Approach We developed a Coq plugin that, from a given goal, constructs a graph that
represent the proof state from a categorical point of view. It constructs a graph were each
object of a category is a node, and each morphism an edge. Equalities between morphism
becomes faces in the graph. See figure 1 for an example, with the sides of the goal highlighted.

To represent remaining goals, the terms can include holes. These representation breaks the
asymmetry between hypothesis and goals, since there only are terms, potentially with holes in
them (this is similar to existential variables in Coq).

Figure 1: The Coq proof state and the corresponding graph
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From then, the graph can be manipulated graphically or using a language created specifically
to manipulate diagrams. Through the manipulations, holes may be filled, or partially filled.
When closing the interface, the terms filling the holes are sent to Coq, and their holes become
new goals. It is not necessary to conclude the proof in the interface, one can go back and forth
between it and Coq, depending on what is the most convenient tool for parts of the proof.

Mathematical papers do not usually bother detailing the last steps of diagrammatic proofs,
that only includes formal manipulations. To simulate this, a small solver has been implemented,
that can automate some of the trivial diagrammatic reasoning. It works by enumerating paths
up to a certain length, and propagating equalities using an union-find.

Lemmas If the interface only allowed structural manipulation of diagrams, its might not
be useful enough. However, we developed a system to use lemmas that are graphical enough
directly from the interface. A lemma is graphical enough if it only quantifies on categories,
objects, functors, morphisms or equality, and its conclusion is one of those five. In that case,
following a procedure similar to the construction of the graph from the context, a graph is
constructed from the lemma, using holes for all the terms it quantify universally upon, and
skolemizing the existential quantifiers. The term of the conclusion is then the lemma applied
to the holes created.

From the interface, the user can display the graph of any lemma, and construct a partial
graph matching between the graph of a lemma and the goal. When matching two terms, they
are unified. After the unifications have succeeded, applying the lemma consist of taking the
pushout of the partial matching. We believe such an operation generalize backward reasoning,
forward reasoning, and cuts, while being quite intuitive and graphical in nature.

Architecture This interface is actually split in two programs. This interface itself, along
with the solver, and all the implementations of the diagram manipulation, are implemented in
rust in a standalone program. This program has no knowledge specific to Coq or even to type
theoretic proof assistants. It operates on an abstract representation of terms.

The role of constructing the representation from the concrete terms is left to the Coq plugin,
written in OCaml. The plugin is also responsible for building concrete terms from abstract
instructions, and constructing the graph from the proof state.

Since most of the logic is fully independent from Coq, it should be quite easy implement
plugins for other proof assistants, which also communicates with the interface though the same
protocol. Once the latter is a bit more stabilised, we hope to document and version it so that
other people can write their own plugin using our interface.

The code source can be found on GitHub1.

Future work To fully support the workflow of a category theorist, there must be a way to
represent and manipulate subdiagrams with structure, like for example isomorphims, pushouts,
or pullbacks. Since making an inventory of such structure would be futile, there must be a way
to specify them. We are looking into generalised sketches[9] as an inspiration for a formalism
to talk about such structures in an abstract way.

Similar tools Standalone proof assistants specific for specific category theories, often with
with some graphical calculus, include Globular[3], rzk[7] and graph-editor[8]. Notable inte-
grations of graphical interaction in text based proof assistants include Actema[4] and lean
widgets[2], the latter being used to implement diagrams visualisation[10].

1https://github.com/dwarfmaster/commutative-diagrams
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The aim of this work is to combine profinite methods and models of the λ-calculus to obtain
a notion of profinite λ-term which, we show, lives in perfect harmony with the principles of
Reynolds parametricity. This is joint work with Sam van Gool and Paul-André Melliès [2].

Languages of finite words and profiniteness. Automata theory has a central role in
theoretical computer science. In its most basic form, it deals with regular languages of finite
words. If M is a finite monoid and φ : Σ∗ →M is a monoid homomorphism, then each subset
S of M induces the regular language

LS := {w ∈ Σ∗ | φ(w) ∈ S} ,

that is the set of words which, when interpreted in the monoid M with the morphism φ, yield
an element of S. We recover all the regular languages in this way:

Reg⟨Σ⟩ = {LS |M a finite monoid, S ⊆M} .

Two finite words can be given a distance measuring the minimal cardinality of a finite monoid
in which their behaviors are different. The monoid of finite words Σ∗ can then be completed
into a topological monoid Σ̂∗ called the free profinite monoid. Its points, known as profinite
words, provide a way to speak about limiting behavior of finite words with respect to finite
monoids [4].

Regular languages are closed under union, intersection and complement, which means that the
set Reg⟨Σ⟩, ordered under the inclusion, is a Boolean algebra. By Stone duality, it has an

associated space of ultrafilters which is in fact homeomorphic to Σ̂∗. The monoid structure on
Σ̂∗ can be seen as the dual of residual operations on Reg⟨Σ⟩, see [1]. In summary,

Σ̂∗ is the Stone dual of Reg⟨Σ⟩ . (1)

From words to λ-terms: the Church encoding. We consider the simply-typed λ-calculus
with one base type o. For any simple type A, we denote by Λ⟨A⟩ the set of closed λ-terms of
type A, taken modulo βη-conversion. To any finite alphabet Σ, we associate the simple type

ChurchΣ := (o→ o)→ . . .→ (o→ o)︸ ︷︷ ︸
|Σ| times

→ o→ o

and we encode finite words over Σ = {a1, . . . , an} as terms of this type in the following way:

w = aw1
. . . awk

is encoded as λ(a1 : o→ o) . . . λ(an : o→ o)λ(c : o). awk
(. . . (aw1

c)) .

We use the finite standard model of the simply-typed λ-calculus, that is we interpret it in the
cartesian closed category FinSet. This means that, for any simple type A and finite set Q, we
obtain a finite set JAKQ and a function

J−KQ : Λ⟨A⟩ −→ JAKQ .
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In particular, a word w ∈ Σ∗ encoded as a simply-typed λ-term of type ChurchΣ will be
interpreted as a function

JwKQ ∈ (Q⇒ Q)⇒ . . .⇒ (Q⇒ Q)⇒ Q⇒ Q

taking as inputs a deterministic transition function for each letter of the alphabet Σ and an
initial state and giving as output the state the automaton arrives at after reading the word w.
This shows that the semantics in FinSet generalize at any type the usual notion of run into an
automaton; see also [3].

Recognizable languages of λ-terms. In analogy with the monoid case, we define regular
languages of λ-terms as sets of λ-terms interpreted as certain semantic elements. Following [6],
for any simple type A, finite set Q and subset F of JAKQ, we define the language LF as

LF := {M ∈ Λ⟨A⟩ | JMKQ ∈ F} .

We can therefore define the set Reg⟨A⟩ of all regular languages of λ-terms of type A as

Reg⟨A⟩ := {LF | Q a finite set, F ⊆ JAKQ} .

Using logical relations, we can prove again that Reg⟨A⟩ is a Boolean algebra and then, in

analogy with (1), we define the space Λ̂⟨A⟩ of profinite λ-terms of type A such that

Λ̂⟨A⟩ is the Stone dual of Reg⟨A⟩ . (2)

There is a natural map Λ⟨A⟩ → Λ̂⟨A⟩, which we prove is injective using [7].

Profinite λ-terms and parametricity. As FinSet is a cartesian closed category, we can
use logical relations. For any relation R ⊆ P × Q, we have a relation JAKR ⊆ JAKP × JAKQ.
Following [5], we say that a family θ of elements θQ ∈ JAKQ, where Q ranges over finite sets,
is parametric if for any relation R ⊆ P ×Q, the elements θP and θQ are related by JAKR. We
denote by Para⟨A⟩ the set of all parametric families associated to a simple type A.

Parametricity can be thought of as the notion of naturality, adapted to the higher-order setting.
The fundamental lemma of λ-calculus states that the interpretation of a λ-term is a parametric
family. Each profinite λ-term can be thought as a family θ verifying certain properties, see
Definition 9 in [2]. We first show the more general result that profinite λ-terms are in particular
parametric.

Theorem 1. For any simple type A, we have Λ̂⟨A⟩ ⊆ Para⟨A⟩ i.e. for any profinite λ-term θ
of type A and relation R ⊆ P ×Q, the points θP and θQ are related by JAKR.
Our main contribution is a parametricity theorem for Church types, which amounts to saying
that any parametric family of type ChurchΣ is the interpretation of a profinite λ-term.

Theorem 2. For any finite set Σ, we have Λ̂⟨ChurchΣ⟩ = Para⟨ChurchΣ⟩.
As future work, we would like to investigate the status of this equality for other higher-order
types. We are also interested in studying the possibly different notions of profinite λ-term that
we obtain when using other cartesian closed categories as models.
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Introduction. In the 90s Dezani-Ciancaglini and Hindley presented combinatory logic [25] as
a Hilbert-style calculus with intersection types [13]. This inspired the line of work [22, 23, 15, 14]
by Rehof and Urzyczyn on composition synthesis based on intersection type inhabitation.
Specifically, the idea of combinatory logic synthesis (CLS) is: Given a repository Γ of combi-
nators typed by intersection types and an intersection type τ , construct combinatory terms M
such that M is assigned the type τ wrt. Γ in Finite Combinatory Logic [22], written Γ ⊢ M : τ .
There are several practical implementations of CLS in programming languages including C# [7],
F# [16], Scala [2], Coq [3], and Python [4]. Most notably, CLS was applied effectively for
synthesis of software product lines [18, 17, 6], simulation models [19], and motion planning
programs [24]. More than a decade of empirical evaluation [3, Chapter 4] demonstrated the
versatility of intersection types as component specification language. However, a notable weak-
ness of intersection types as synthesis query language is the inability to express negative in-
formation [1, Chapter 5]. Motivated by the line of work by Castagna on programming with
set-theoretic types [11], we propose a Boolean extension to the CLS query language, adding
the connectives ∧, ∨, and ¬. We give a stratified type system, consisting of a variant of fi-
nite combinatory logic [22, Section 4] and (partly) a monomorphic variant of the set-theoretic
type system [11, Section 4]. We implement two distinct approaches [9, 8] for Boolean query
evaluation, based on the most influential CLS frameworks (CLS-Scala [2] and CLS-Python [4]).
Formally, we give inhabitation procedures for the presented stratified type system. Finally, we
compare the two approaches and outline open questions.

Preliminaries. CLS-Scala and CLS-Python use intersection types with products and type
constructors [3, Definition 3], given by the grammar σ, τ ::= ω | c(σ) | σ × τ | σ → τ | σ ∩ τ ,
where c ranges over unary, covariant, distributing constructors. Accordingly, intersection type
subtyping (≤) is extended [3, Definition 5]. Combinatory terms M,N ::= X | M N , where X
ranges over term variables, are assigned intersection types according to the rules of finite com-
binatory logic FCL(∩,≤) [22, Figure 3], given below.

(Var)
Γ, X : τ ⊢X : τ

Γ ⊢M :σ Γ ⊢M : τ (∩I)
Γ ⊢M :σ ∩ τ

Γ ⊢M :σ→ τ Γ ⊢N :σ (→E)
Γ ⊢MN : τ

Γ ⊢M :σ σ≤ τ (≤)
Γ ⊢M : τ

We introduce the Boolean query language φ,ψ ::= σ | φ ∧ ψ | φ ∨ ψ | ¬φ, where intersection
types act as propositions. For query evaluation we extend the above typing rules as follows.

Γ ⊢ M : τ (Embed)
Γ ⊢BM : τ

Γ ⊢BM :φ Γ ⊢BM :ψ
(∧I)

Γ ⊢BM :φ ∧ ψ

Γ ⊢BM :φi i ∈ {1, 2}
(∨I)

Γ ⊢BM :φ1 ∨ φ2

Γ ̸⊢BM :φ
(¬I)

Γ ⊢BM : ¬φ
The following example illustrates the interaction of layers ⊢ and ⊢B in the above type system.
Example 1. Consider the repository Γ =

{
X : a ∩ b ∩ d, Y : d, F : (a → b) ∩

(
d → (a ∩ c)

)}

and the query φ = a∧ ¬(b∧ c), where a, b, c, d abbreviate the types a(ω), b(ω), c(ω), d(ω). We
have Γ ⊢B M : φ iff M ∈ {X,F Y }. Since Γ ⊢ F X : a, Γ ⊢ F X : b, and Γ ⊢ F X : c we have
that Γ ̸⊢B F X : φ.
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CLS-Scala approach. Given a repository Γ and an intersection type τ , the inhabitation
procedure in CLS-Scala results in a regular tree grammar recognizing the set of combinatory
terms {M | Γ ⊢ M : τ}. Such terms can be interpreted and evaluated as Scala programs. For
minimal interference with existing projects and maximal code reuse, we conservatively extend
CLS-Scala. We implement the connectives ∧, ∨, and ¬ as tree grammar intersection, union, and
complement relative to the set of inhabitants of the universal type ω. Both tree grammar inter-
section and union algorithms are well-known [12]. However, the relative complement requires a
repository-aware completion (cf. [12, Example 1.1.6]) and complementation [12, Chapter 1.3].
For evaluation, we intersect the resulting grammar with the set of well-typed Scala terms.

Consider the repository Γ and the query φ = a ∧ ¬(b ∧ c) from Example 1. The tree
languages of inhabitants of the types a, b, and c are {X,F X,F Y }, {F (F Y ), F X, F (F X), X},
and {F X,F Y } respectively. By language intersection, the inhabitants of b ∧ c are {F X}.
Therefore, inhabitants of the query ¬(b ∧ c) are in the relative complement of {F X}, which
contains all combinatory terms built from the term variables X, Y , and F , except F X. Finally,
the language intersection of the inhabitants of type a with those of the query ¬(b∧c) is {X,F Y }.

CLS-Python approach. Rather than lifting the connectives to grammar operations, we
extend the inhabitation procedure (INH) [22, Figure 4] to handle negative information. We
observe that any Boolean query can be presented equivalently in minimal disjunctive normal
form (DNF) [21, 20]. Therefore, it suffices to extend INH to work with conjunctive clauses,
and combine the results. For this, we exclude inhabitants according to negative information
(cf. INH, Line 5), and propagate negative information recursively (cf. INH, Line 8).

For the query φ from Example 1, a minimal DNF is (a∧¬b)∨(a∧¬c). The first clause a∧¬b
is inhabited by terms of shape F M , for some term M of type d but not of type a. Propagating
positive and negative information, the clause d ∧ ¬a is constructed, which is inhabited by Y .
The second clause a∧¬c is inhabited by X. In sum, the terms in {X,F Y } inhabit the query φ.

Comparison. Both approaches require similar implementation effort of approx. 500 LOC.
The main advantage of the CLS-Scala approach is its modularity in two ways. First, as

a conservative extension it does not interfere with existing projects. Second, it is not lim-
ited to Boolean connectives. Other tree language operations, such as a restriction wrt. term
rewriting systems [5], can be addressed in this way. Additionally, computability follows from
established results [12, 22]. The main disadvantage is an exponential blowup for intersection
and complement operations, which negatively impacts scalability.

In comparison, the main advantage of the CLS-Python approach is a fine-grained control
over information propagation in the inhabitation procedure, avoiding blowup in many cases.
However, it is unclear how to address other operations.

A performance evaluation on the basis of a common scalable benchmark [10] for CLS has
shown wildly different behavior of the presented approaches. Still, both approaches perform
well in representative scenarios.

Open questions. The main open question is the exact relationship of the presented strat-
ified type system and the family of set theoretic type systems [11]. This may provide insight
on how to extend the specification language to include negative information. Complementarily,
an investigation into syntactic subtyping [11, Section 3.1] in the full query language is essen-
tial. Further open questions regard the exact logic and model of the proposed type system,
complexity of the inhabitation decision problem.
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Motivation. Python’s increasing popularity has led to its adoption from entry-level program-
mers to scientists and engineers [1, 3, 4]. Hence, a trustworthy Python execution machinery
should be critical and valuable. However, the language lacks a comprehensive formal definition
that could be used to provide provable guarantees and guide a verified implementation [7, 8].
Previous attempts to formalize Python’s source code have left out several features and core
parts. This is in part due to the sheer size, complexity, and constant evolution of the lan-
guage. But also, Python’s definition is written in natural language (e.g. English), which can
be imprecise, open to interpretation, and inconsistent with the actual implementation [7, 8].

Contribution. We propose that, since Python’s virtual machine executes bytecode, an alter-
native direction towards a verified Python implementation is to start from this lower, smaller
and more stable level. Therefore, we present, to our knowledge, the first formalization of
Python’s bytecode and virtual machine. This is, of course, not free of challenges, as Python’s
bytecode specification is also written in natural language. When descriptions were not clear,
we used cpython as Python’s reference implementation to fully understand the semantics. Our
formalization uses inference rules in the style of [5, 6] to define typing of objects and semantics,
which includes bytecode execution and frame stack management. The proposed rules are shown
to satisfy progress and preservation. In addition, our proposed framework can be extended with
built-in types without breaking safety guarantees. The formalized rules were implemented in
F⋆, where properties can be proved automatically via dependent types or lemmas solved by
an SMT solver. We call this implementation Py⋆ 1. From the F⋆ implementation, we ex-
tracted a Python bytecode interpreter in OCaml. This verified Python execution machinery
was compared to cpython for both consistency and performance.

Typing. Python is an object-oriented language in which all entities are objects of a certain
class. However, unlike other object-oriented languages, there is no static class (or type) checking.
Hence, one could say that all objects are of class Object statically, and their “real” class is only
discovered at runtime. In that sense, Python is statically unityped, which means that “type
checking” is now the responsibility of the execution machinery. Therefore, Python objects
must have enough typing information so that the virtual machine is able to check types at
runtime, and raise the appropriate errors when necessary. At the same time, this internal
typing information should not impact how programmers see and operate with the objects. We
achieve this by encapsulating the type information inside the top-level Object type.

Our typing system consists of 3 different layers valTyp, cls, and pyObj. At the innermost
level is valTyp, indicating whether the class implements a built-in type (e.g. int, string, list,
etc.) or is defined by the user (USERDEF). Below is a sample of the valTyp typing rules:

USERDEF : valTyp

i : int

INT(i) : valTyp

s : str

STRING(s) : valTyp

b : bool

BOOL(b) : valTyp

1The code for Py⋆ can be found here https://github.com/ammarkarkour/PyStar/
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A valTyp value is encapsulated in a cls record, which is the type of all objects in Python’s
source code. This record contains the name of the class, the process id of the object, a valTyp

value, and two mappings of fields and methods.
When it comes to execution, cpython uses the same type for both source code and virtual

machine objects. E.g., a bytecode instruction and an integer would both have type PyObject.
However, the distinction between these two kinds of objects is crucial for our formalization,
as it allows proving correctness of the virtual machine independently of the user’s code. This
distinction is made via the constructors of pyObj, which are: PYTYP(obj) for cls objects;
CODEOBJECT(co) for bytecode; FRAMEOBJECT(f) for frames (i.e. a program state); FUN(f) for
functions on built-in Python types (e.g. < or lt ); and ERR(s) for errors. Below is a sample
of pyObj typing rules (in the interest of space, we will not show the typing rule for frameObj):

obj : cls

PYTYP(obj) : pyObj

msg : str

ERR(msg) : pyObj

f : list pyObj → valTyp

FUN(f) : pyObj

f : frameObj

FRAMEOBJECT(f) : pyObj

Semantics. Python’s execution machinery works on a stack of frames. A frame is a tuple
⟨φ,Γ, i,∆⟩ where φ is a name context, Γ contains the bytecode Π, i is the program counter,
and ∆ is the data stack. The semantic rules formalize how frames f are evaluated and how the
frame stack K is managed. A frame stack in the evaluation state is written as K ▷ f , and in
the return state as K ◁ ret(v). Frame stack evaluation rules use the judgment K ◦f 7−→ K ′ ◦f ,
where ◦ ∈ {▷, ◁}. Frame evaluation rules use the judgment f

Γ.Π[i]7−−−−→f ′, where the arrow is labelled
with the bytecode operation being executed. An example of each kind of rule is shown below:

⟨φ,Γ, i,∆⟩ Γ.Π[i]7−−−−→ ⟨φn,Γn, in,∆n⟩
K ▷ ⟨φ,Γ, i,∆⟩ 7−→ K ▷ ⟨φn,Γn, in,∆n⟩ ⟨φ,Γ, i, v :: ∆⟩ Γ.Π[i]=POP TOP7−−−−−−−−−−→ ⟨φ,Γ, i + 1,∆⟩

Safety Proving safety (or soundness) of our typing system entails proving that well-typed
terms do not reach a “stuck state”, which is a state where no formal semantics rule is applica-
ble [6]. This property is ensured by proving progress and preservation of our rules:

Thm 1 (Frame Stack Semantic Progress). A well-typed frame stack does not get stuck, that is,
it is either in a final state or it can take a step according to the frame stack semantic rules.

Thm 2 (Preservation). If an object o : τ evaluates to o′, then o′ : τ .

The proofs of the theorems follow the expected pattern. However, one must go through
them to have at least a sanity check that all cases are covered.

Implementation. F⋆ is a general-purpose functional programming language with effects
aimed at program verification [9]. One of the motivations for choosing F⋆ for our formal-
ization was because the tool was successfully used to verify assembly instructions, which is a
project close to ours [2]. Our verified implementation starts by embedding the defined types and
objects in F⋆. Following that, we enforce the semantics rules’ properties through the use of F⋆’s
dependent types and lemmas. For example, this is how the rule for POP TOP is implemented:

val pop_top: (l: list pyObj {Cons? l}) -> Tot (l2: list pyObj {l2 == tail l})

let pop_top datastack = List.Tot.Base.tail datastack

Following that, we use F⋆’s tools to extract a verified Python bytecode interpreter in OCaml,
which was tested against hand-crafted test cases and a subset of cpython’s test kit. We are
actively working on covering the whole of cpython’s test suite.
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Introduction Bisimulations and game techniques for higher-order languages have proved to
be powerful tools for reasoning about program equivalence and building models that scale to
advanced features such as side effects or existential types. Yet, their usage in mechanized proofs
is rare. In this work in progress, we argue that this observation is, in part, the consequence of
several mismatches between the traditional presentation of games in set theory and idiomatic
constructions from type theory. We hence present a formulation of games and strategies more
amenable to manipulation in proof assistants.

The framework we propose is structured around a coinductive representation of labelled
transition systems (LTS), inspired by interaction structures [HH06], by the Coq library of
interaction trees [XZH+20], and building upon the work of Levy and Staton [LS14]. Our main
contribution is to provide a unified account of operational game semantics (OGS [Lai07, LL07]),
an LTS-based game model for which we prove the correctness of the generated bisimulation
with respect to contextual equivalence1. The construction, and the proof, are parametrized
by a rather loose notion of evaluator assumed to satisfy a succinct axiomatization. In this
talk, we will focus on (1) introducing the standard approach of operational game semantics
succinctly, before (2) giving a more detailed account of the peculiarities and advantages of our
representation of games and strategies.

Operational Game Semantics The behavior of a program can be represented as the set of
its interactions with any execution environment. These sets of interactions can be generated
intensionally by an LTS, where the labels encode information exchanged. For higher-order lan-
guages, this interaction may typically be the application of the term at hand to an arbitrary
value v. One might be tempted to describe it as the transition λx.e app(v)−−−−→ e[x 7→v] but em-
barking higher order values in labels leads to challenging notions of bisimilarity. Following a
technique used in pointer-games [HO00], operational game semantics provides a way to keep the
traces first-order: instead of full-blown terms, only an abstracted or inert version is exchanged,
with fresh channel names in place of subterms we wish to hide. The LTS of a term is constructed
by evaluating it to a normal form, say E[x v] in call-by-value, and issuing a label corresponding
to the shape of this normal form. Here the label app(x) is issued and will bind two fresh chan-
nels, one for the abstracted argument v provided to x and one for the abstracted continuation
E. This transition leads the LTS to a passive state where the environment (Opponent) is able
to resume computation by choosing an available channel.

Labels are now semantically simpler, but they bind and reference channel names. To tackle
this, we resort to a static scoping discipline and use dependent-types. Labels are indexed by
channel scoping information, containing types such as s → t for functions and ¬s for continua-

1At the time of writing the mechanized version of the proof is not complete.
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tions. The function next gives the new scope after a label has been issued (slightly simplified):

label : scope → Type
label Γ := apps,t (s → t ∈ Γ) | rets (¬s ∈ Γ)

nextΓ : label Γ → scope
nextΓ (apps,t i) := s,¬t,Γ
nextΓ (rets i) := s,Γ

The astute reader will have recognized that these label and scope transition rules already form
an LTS! We dub it the game specification. The OGS LTS proper is indexed over this specification
LTS. As our languages of interest have general recursion, we allow usage of the delay monad
D [Cap05]. We give the types of the configurations and active/passive transition functions:
conf -act : scope → Type
conf -pas : scope → Type

trans-act : conf-act Γ → D((m : label Γ)× conf-pas (nextΓ m))
trans-pas : conf-pas Γ → (m : label Γ) → conf-act (nextΓ m)

From Polynomial Functors to Two-Player Games OGS is a symmetric game but in
general, Proponent-chosen and Opponent-chosen labels might be different. Thus our two-
player game specifications consist of two matching half-game descriptions. Descriptions are
parametrized by a set of states for each player, each side giving for each state the set of allowed
moves, and for each move the next state. Each half-game gives rise to two functors on families
which we call the active and passive interpretation.

record half -game (I J : Type) := {move : I → Type ; trans : ∀i,move i → J }
record game (I J : Type) := {ply : half-game I J ; opp : half-game J I }
active (H : half-game I J) (X : J → Type) i := (m : H.move i)×X(H.trans m)

passive (H : half-game I J) (X : J → Type) i := (m : H.move i) → X(H.trans m)

An indexed polynomial endofunctor [AGH+15] can be constructed by composing the active
resp. passive interpretation of Proponent resp. Opponent half-games. We can then build
strategies by taking an infinite tree construction on this endofunctor. As we wish to handle
looping in strategies, following the lead of interaction trees, our construction of choice is a free
complete Elgot monad [GMR16] which we give here in two mutually coinductive definitions.
The three cases in active strategies correspond respectively to leaves, silent steps similar to the
“later” node of the delay monad, and playing a move. Passive strategies correspond to waiting
for an Opponent move.
strat+(G : game I J) X i := ret (X i) | tau (strat+ G X i) | vis (active (G.ply) (strat− G X) i)

strat− (G : game I J) X j := passive (G.opp) (strat+ G X) j

Several dualities are at play. First, we can dualize a game by swapping the two components,
hence reversing the players’ roles. This dualization is definitionally involutive, an improvement
over [XZH+20, HH06] where question-answer swapping is hard to make sense of. Second, on
half-games there is a functor-functor interaction law [KRU20] between the passive and active
interpretations which we dub synchronization. Intuitively it makes a sender and a receiver
interact and progress. These two constructions together give rise to several more or less general
composition operators between strategies and counter-strategies, of which we give a simple one:

sync : Σi(active H X i× passive H Y i) → Σj(Xj × Y j)

compo : Σi(strat
+ G X i× strat− G⊥ Y i) → D(ΣiXi+ΣjY j)

Moreover, like polynomial functors, half-games and games are closed under a number of
combinators, some studied in [LS14] and strikingly similar to linear logic connectives which we
have to investigate further.
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Motivation. Lambda-calculi are term structures involving variable binding. Untyped lambda-
terms, in particular, have very often been extended to potentially non-wellfounded lambda-
terms; these still consist of variables, lambda-abstractions and applications only, but the con-
struction process can go on forever. Such construction processes (e. g., for Böhm trees) can
nevertheless be described through functional programming, and the host programming lan-
guage then serves as a meta-language for the description of those infinitary lambda-terms.

We do not only want to be able to program with such structures but aim to develop a fully
formalized theory about them. For the formalization, we have chosen the Coq system [16].

Coq features a built-in mechanism for specifying coinductive types and for defining functions
by corecursion. However, definitions by corecursion in Coq face numerous issues with guard-
edness, in particular when the coinductive type makes also use of a parameterized inductive
type whose parameter is built with the coinductive type. (This is a so-called mixed inductive-
coinductive definition, see a recent PhD thesis on the topic [5]; workarounds especially for proofs
by coinduction exist through Mendler’s style [13], but in the present work, we only rely on the
universal property of a final coalgebra.)

Our formalization of non-wellfounded syntax is developed within formalized category theory
in the UniMath library of univalent mathematics [17] on top of Coq. We are using UniMath
for its large library of category theory; although our development is informed by univalent
foundations, we still mimic ordinary category-theoretic constructions, such as the construction
of final coalgebras as ω-limits.

An application scenario. There are many application scenarios for potentially non-well-
founded syntax with variable binding. We focus here on one [14, Section 3.2] where the second
author has been involved, and which we plan to study with our formalization: the idea is to rep-
resent the entire search space for inhabitants in simply-typed lambda-calculus by a potentially
non-wellfounded term of a suitable calculus. This calculus is informally given by the following
grammar:

(terms) N ::=co λxA.N |E1 + · · ·+ En
(elimination alternatives) E ::=co x⟨N1, . . . , Nk⟩

where both n, k ≥ 0 are arbitrary. The elements of the syntactic category of terms are also
called forests. The index co means that the grammar is read coinductively. The typing rule
for the sums of E’s is just that all summands have to have the same type, and this is the
type of the sum—it represents alternatives. The other rules are inherited from simply-typed
λ-calculus. Let 0 be a base type. The closed forest Nat of type (0 → 0) → 0 → 0 is given
by Nat := λf0→0λx0.N , with N of type 0 coinductively given by N = x⟨⟩ + f⟨N⟩. This is
a representation of all Church numerals, including infinity. The corecursive equation for N is
appreciated on the level of the host programming language. The cited paper notably associates
with every simple type A a forest that represents the entire search space for inhabitants in
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long normal form of A. Typing plays a major role here, so a formalization has to take into
account the typing. The types of the object language (for which we give a deep embedding
into Coq) will henceforth be called sorts, whence we speak about multi-sorted languages with
(sorted) variable binding. But already the untyped forests above profit from multi-sortedness:
we need to use three sorts corresponding to the three syntactic entities of variables, terms, and
elimination alternatives.

As a benefit of the deep embedding, we obtain a generic construction for all descrip-
tions of multi-sorted coinductive term calculi with binding (and thus have no need for meta-
programming to reason about all of them).

The actual construction. The following steps are done uniformly for all languages we can
express in our setting. (i) We describe simply-typed syntax with variable binding (of finitely
many sorted variables in each constructor argument) as a multi-sorted binding signature. (ii) We
then construct a signature functor H (deviating from [4] for technical reasons), with proofs of
ω-continuity of H for the coinductive syntax, and a “lax lineator” between actions expressing
pointed tensorial strength of H. (iii) We construct the coinductive syntax as inverse of a fi-
nal coalgebra (using ω-continuity). (iv) We construct a generalized substitution operation (a
generalized heterogeneous substitution system—a new abstraction that works both for inductive
and coinductive syntax). (v) We construct a Σ-monoid (a notion relative to monoidal cate-
gories—this is generic for all generalized heterogeneous substitution systems). (vi) Finally we
interpret the obtained monoid as monad (hence as monadic substitution) by instantiating the
monoidal category to the endofunctors. These steps are formalized in UniMath [17].1

Our construction builds on previous work; the work we use most directly is the follow-
ing: [12] for the construction of a well-behaved substitution system for wellfounded and non-
wellfounded syntax; [4] for the chain from multi-sorted binding signatures to certified monadic
substitution on the wellfounded syntax, formalized in UniMath; [9] for the abstraction level of a
monoidal category (and hence the construction of a substitution monoid rather than a substi-
tution monad)—multi-sorted syntax is not considered there; and [8] and [10] for the actegorical
notion of strength suitable to incorporate pointedness (that plays the role of the insertion of
variables into terms). We could have made use of the Coq code [11] for skewed monoidal
categories and Σ-monoids, but we redeveloped notions in UniMath that profit more from the
mechanism of displayed categories, functors, etc., for the construction and analysis of layered
structures available in UniMath since [3].

Final comments. The work we are describing resides on different levels of abstraction. From
the point of view of formalization, the taken levels seem to be a good compromise, as evidenced
by the fact that the full formalization already exists in UniMath. However, in several dimensions,
there could be more generality: Our coinductive types are rather coinductive families of sets
and not of higher homotopy level (such as the construction of M-types in [1], which cannot
represent variable binding). Pseudo-algebras for pseudo-monads are the abstract concept behind
monoidal categories and actegories, as explained in depth in [7]. Furthermore, the variable
binding that can be captured by multi-sorted binding signatures is rather concrete, while an
abstract concept is based (again) on pseudo-monads and pseudo-distributive laws [15]. For a
formalization in Coq (via the UniMath library), it would have to be seen if those notions could
be suitably adapted from the strict two-categorical setting to bicategories for which an extensive
library has been available in UniMath since [2].

1The development that is specific for the present abstract has been mostly done within the scope of the
following pull request: https://github.com/UniMath/UniMath/pull/1633.
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Categorical Logic is a branch of mathematical logic which uses the concepts and tools of
category theory to investigate logical systems and deductive calculi, following in the example
of Lawvere’s pioneering work on functorial semantics for algebraic theories[Law63]. In this
talk, we’ll provide a progress report on a formalization of categorical logic in the Lean proof
assistant [dMKA+15]1. Lean is an interactive theorem prover and dependently-typed functional
programming language, based on the Calculus of Inductive Constructions. Proofs in Lean are
done using proof tactics, making use of Lean’s powerful and flexible tactic monad. In Lean,
we can define new tactics – allowing for abstraction and reuse of common reasoning patterns–,
and also make use of various tactic combinators to automate and simplify proofs.

As a simple proof-of-concept for categorical logic in Lean, we’ll discuss the formalization of
the syntactic category construction for the positive propositional calculus (PPC), which is the
following fragment of intuitionistic propositional logic: formulas are given by the grammar

φ,ψ ::= p | ⊤ | φ ∧ ψ | φ→ ψ

with the usual natural deduction rules for these connectives. By quotienting the set of formulas
by the inter-derivability relation ⊣⊢, we obtain the syntactic poset or Lindenbaum-Tarski algebra
[Tar83] of the PPC. Viewing this poset as a category, we obtain the syntactic category of PPC.
With the right Lean tactics, we’re able to prove in just a few lines that this syntactic category
forms a cartesian closed category (a key step in the proof of the completeness of the PPC with
respect to Kripke semantics), with this extra categorical structure arising from the deductive
rules of PPC. The full proof can be seen in Figure 1. Take for instance this line,

pr2 := by LiftT `[ apply And.and elimr ],

which constructs the ‘pairing’ operation in a CCC (combining morphisms f : Z → X and
g : Z → Y into ⟨f, g⟩ : Z → X × Y ) by lifting the PPC deduction rule of ∧-introduction (if
Φ ⊢ φ and Φ ⊢ ψ, then Φ ⊢ φ ∧ ψ). The LiftT tactic defined as part of this project – whose
operation we’ll seek to describe – allows us to perform these kinds of ‘liftings’ of deduction rules
onto constructions in the syntactic category. Time permitting, we will also discuss extensions
to this basic PPC framework – such as the addition of modal operators 2 and ⋄ to the logic,
which correspond to (co)monads on the syntactic category – as well as the role this construction
plays in soundness and completeness proofs.

The (work-in-progresss) documentation for this formalization project can be found at lean-
catLogic.github.io.

1This formalization is done in Lean 3, and partially uses the accompanying mathematical library [mC20].
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10

11 instance syn FP cat {Form : Type} [And : has and Form] : FP cat (Form eq) :=

12 {

13 unit := syn obj And.top,

14 term := by LiftT `[ apply And.truth ],

15 unit η := λ X f, by apply thin cat.K,

16 prod := and eq,

17 pr1 := by LiftT `[ apply And.and eliml ],

18 pr2 := by LiftT `[ apply And.and elimr ],

19 pair := by LiftT `[ apply And.and intro ],

20 prod β1 := λ X Y Z f g, by apply thin cat.K,

21 prod β2 := λ X Y Z f g, by apply thin cat.K,

22 prod η := λ X Y, by apply thin cat.K

23 }

24 instance syn CC cat {Form : Type} [Impl : has impl Form] : CC cat (Form eq) :=

25 {

26 exp := impl eq,

27 eval := by LiftT `[ apply cart x.modus ponens ],

28 curry := by LiftT `[ apply cart x.impl ε],
29 curry β := λ {X Y Z} u, by apply thin cat.K,

30 curry η := λ {X Y Z} v, by apply thin cat.K,

Figure 1: For any deductive calculus with truth, conjunction, and implication (satisfying the
usual rules), its syntactic category is a CCC. As discussed, the uses of LiftT are instances
where deduction rules of the PPC are lifted to constructions on the syntactic category. The
lines invoking thin cat.K are appeals to the fact that the syntactic category is a poset in order
to prove that certain diagrams commute.
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Various kinds of structured categories are used to study the semantics of various flavors of
type theory. For example, cartesian closed categories and symmetric monoidal closed categories
are used to study the semantics of simple and linear type theory, respectively [3, 5]. Such
categories represent models of the theory in study, whereas the initial such model represents
the syntax.

If we would like to replicate this idea in univalent foundations, then we stumble on a dif-
ficulty. Categorically, one would describe the syntax as the initial model in the category of
models. Since the correct notion of category in univalent foundations is that of a univalent cat-
egory, this reflects onto the models as well. For the simply typed lambda calculus, this means
that one needs to construct the initial univalent cartesian closed category. However, if one uses
the usual presentation of the syntax (of, for example, the simply typed lambda calculus), then
the acquired category is not guaranteed to be univalent. As such, one needs to do some extra
work to acquire the desired initial model.

The solution for our problem, lies in what is known as the Rezk completion. In [2], it is
shown how every category is weakly equivalent to a univalent category. However, in that paper,
preservation of categorical structure under Rezk completion is not considered. More concretely,
if a category has a cartesian closed or a symmetric monoidal structure, can we say the same
about its Rezk completion?

The goal of this abstract is to study the Rezk completion of categories with some additional
structure. More specifically, our goal is to show how, for some notion of structure, the Rezk
completion of a category preserves the structure.

1 Displayed Universal Arrows

To generalize the Rezk completion to structured categories, there are several aspects that we
need to consider. Among these aspects are the notion of structure in consideration and the
desired universal property. For that purpose, we recall the universal property of the Rezk
completion. Let us denote the Rezk completion of C by RC(C). In [2] it is shown how this
univalent category RC(C) satisfies the following universal property: every functor F : C → D to
a univalent category D factorizes uniquely through RC(C).

We can formulate this universal property in the language of bicategories. Given a type-
theoretic universe U , we write CatU and UnivCatU for the bicategories of categories and of
univalent categories in universe U respectively. Now suppose that RC preserves the universe
level. If we assume that U is closed under a suitable class of higher inductive types, then we
can construct the desired Rezk completion as a higher inductive type [6]. Then the universal
property of the Rezk completion says that the inclusion UnivCatU → CatU has a left biadjoint.
By formulating this biadjunction in the language of universal arrows, we obtain the universal
property mentioned before.

The next question is what we mean by a structured category, and to answer that, we use
displayed bicategories [1]. Recall that a displayed bicategory over B corresponds to structure
and properties to be added to the objects, 1-cells, and 2-cells of B. As such, we represent a notion
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of structured categories by a displayed bicategory D over CatU . Note that every such displayed
bicategory gives rise to a displayed bicategory Duniv over UnivCatU . The total bicategories

∫
D

and
∫
Duniv are the bicategories of structured categories and structured univalent categories

respectively. Now we define when a notion of structured category admits a Rezk completion.

Definition 1. We say that D admits a Rezk completion if the inclusion pseudofunctor
from

∫
Duniv into

∫
D has a left biadjoint.

Note that constructing left biadjoints can be a rather demanding task due to the large
amount of data and properties involved. A convenient tool for constructing biadjoints is uni-
versal arrows [4]. Since we work in a displayed setting, the notion of displayed universal arrow
is more suitable for our setting.

Definition 2. Suppose that we have bicategories B1 and B2. Let R : B1 → B2 be a pseudofunc-
tor, and suppose that we have a left universal arrow L, whose unit we denote by η : Id⇒ L ·R.
Let Di be a displayed bicategory over Bi (i = 1, 2) and RD a displayed pseudo-functor D1 → D2

over R. A displayed universal arrow of RD over L ⊣ R consists of the following data:

1. A function LD :
∏
x:B2

(D2)x → (D1)Lx

2. For any x : B2 and x̄ : (D2)x, a displayed morphism x̄→ηx R
D(LD(x̄)).

such that we have a certain displayed adjoint equivalence between displayed hom-categories.

Every displayed universal arrow gives rise to a universal arrow on the total bicategory, which
in turn gives rise to a left biadjoint. As such, to show that D admits a Rezk completion, it is
sufficient to construct a displayed universal arrow for the inclusion.

2 Rezk completions of structured categories

The aim of this work in progress is to show that a wide class of structured categories admits
a Rezk completion. Our approach is modeled after the construction of the monoidal Rezk
completion [7]. The idea is that the same steps as in [7] can be used for other structures. For
that reason, we recall the steps taken in that proof.

Let (C,⊗, I) be a monoidal category and denote by ηC : C → RC(C) the weak equivalence
given by the Rezk completion. Observe that the monoidal Rezk completion lifts the monoidal
structure on C to RC(C) in such a way that ηC preserves the monoidal structure strongly. In
addition, for every univalent monoidal category D, the lifting liftηC (F ) : RC(C) → D, of a
monoidal functor F : C → D has a monoidal structure. This lifting is unique with respect
to the equation F ∼=monoidal ηC · liftηC (F ), which is an isomorphism in the monoidal functor
category [C,D]monoidal. As such, we obtain an isomorphism of monoidal categories

ηC · − : [RC(C),D]monoidal → [C,D]monoidal.

Each of these three steps is (equivalently) proven using the fact that precomposing with ηC
induces an adjoint equivalence of hom-categories.

Note that we can express the above proof using the language of Section 1. For this reason,
we conjecture that the notions in Section 1 provide a setting in which we can generalize the
Rezk completion to structured categories.

2
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Induction-recursion [8] means that an inductive type is defined mutually with a recursive
function from that type into a different type (left hand side).

data A : Set data A : Set

f : A→ B f : A→ A

If B is small, this type can be reduced to an inductive type indexed over B [10] where the index
of a constructor is given by the result of f on it. The above reduction does not work however
when the return type of f is A itself (right hand side). A concrete example for such a type is
the intrinsic syntax of type theory where instantiation of substitution is defined recursively [7].
The inductive parts of the definition are the separate sorts of contexts, parallel substitutions,
types and terms, the recursive part is instantiation of substitution. This is a function which
takes a term in context Γ and a substitution from ∆ to Γ and returns a term in context ∆. We
don’t have semantics for these inductive-recursive types, but we are not surprised that Agda
supports (some of) them. We don’t know how to circumscribe the supported subset of such
definitions other than saying that Agda’s pattern matching mechanism and termination checker
should accept them.

The syntax of type theory was defined using inductive-inductive types [5] before the notion
induction-induction [9] was coined. Analogously, quotient inductive-inductive types (QIITs)
were used to define the syntax of type theory [2] before the well-behaved QIITs were circum-
scribed [11]. Is there a way to define what a QIIRT is?

In this talk we will give a completely precise definition of a particular QIIRT in an ordinary
type theoretic metatheory and not relying on pattern matching or termination checking. This
QIIRT is the intrinsic quotiented syntax of simple type theory. By intrinsic we mean that
only well-formed, well-scoped, well-typed terms are part of the syntax, we don’t even mention
preterms or typing relations. By quotiented we mean that α-β-η-convertible terms are equal
(up to Agda’s equality type), in particular we don’t even mention congruence rules (they are
provable using the eliminator of the equality type).

Extrinsic syntax has the advantage over intrinsic syntax that instantiation is defined recur-
sively, and thus equations such as (t · u)[σ] = (t[σ]) · (u[σ]) hold by definition (– · – denotes
function application). The syntax we present below has the same feature, so this ceases to be
an advantage anymore. In Agda (and even more in other proof assistants), extrinsic syntax still
holds the advantage of avoiding transport hell, c.f. impressive extrinsic formalisations [1, 13].

We define models of simple type theory as simply typed categories with families (sCwFs
[4]) with a base type and function space. We denote the category of contexts and substitutions
by Con, Sub, – ◦ –, id, instantiation of substitution by –[–] : Tm ΓA → Sub ∆ Γ → Tm ∆A,
context extension by – � – : Con → Ty → Con, projections by p : Sub (Γ � A) Γ and q :
Tm (Γ � A)A, function space by – ⇒ –, lambda and application by the natural isomorphism
lam : Tm (Γ�A)B ∼= Tm Γ (A⇒ B) : –[p] · q. The weak syntax is the initial such model which
can be defined as a QIIT. Its iteration principle says that there is a strict homomorphism from
the weak syntax to any model (“strict” means that preservation of operations is definitional).
Its induction principle says that there is a strict section of any displayed model over the weak
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syntax. Cubical Agda [15] supports the weak syntax, or it is possible to postulate the weak
syntax with its induction principle using rewrite rules [6] in ordinary Agda.

We denote the weak syntax by Sw, components of a displayed model over the weak syntax
include the following (see [11] for how to obtain the notion of displayed model for any theory).

Ty• : TySw → Set

Tm• : Con• Γ→ Ty•A→ TmSw ΓA→ Set

– ⇒• – : Ty•A→ Ty•B → Ty• (A⇒Sw B)

– ·• – : Tm• Γ• (A• ⇒• B•) t→ Tm• Γ•A• u→ Tm• Γ•A• (t ·Sw u)

·[]• : transp(Tm• Γ• B•) ·[]Sw (t• ·• u•)[σ•]• = (t•[σ•]•) ·• (u•[σ•]•)

Each displayed component is over the corresponding component in the weak syntax. In par-
ticular, the left hand side of the equation ·[]• is transported over ·[]Sw because it has type
Tm• ∆•B• ((t ·Sw u)[σ]Sw) while the right hand side has type Tm• ∆•B• ((t[σ]Sw) ·Sw (u[σ]Sw)).

By induction on terms of the weak syntax, we define a new instantiation operation –[–]
mutually with its correctness property. Parts of its definition are below. Formally, this is given
as interpretation into a displayed model over Sw instead of pattern matching.

–[–]new : TmSw ΓA→ SubSw ∆ Γ→ TmSw ∆A

correct : (t : TmSw ΓA)→ t[σ]new = t[σ]Sw

(t ·Sw u)[σ]new :≡ (t[σ]new) ·Sw (u[σ]new)

correct (t ·Sw u) :≡ ·[]Sw
Now we define the strict syntax Ss as a new model of our theory. Most components are
the same as in the weak syntax, except instantiation which is given by the above recursive
definition –[–]Ss :≡ –[–]new. Substitution laws in Ss are reflexivity, e.g. ·[]Ss :≡ refl. Calling Ss
syntax is justified by the fact that all its operations are definitionally or (in the case of –[–]Ss)
propositionally equal to those in Sw. Thus it is straightforward to derive its induction principle:
every displayed model over Ss has a strict section. The notion of displayed model over Ss is
slightly simpler than that over Sw because the substitution laws do not need transport anymore.
E.g. –[]• now has type (t• ·• u•)[σ•]• = (t•[σ•]•) ·• (u•[σ•]•), the two sides have the same type.

Using the strict syntax is very convenient: congruence laws for substitutions are definitional,
most substitutions disappear automatically. Proving canonicity using the weak syntax takes
190 lines of Agda code compared to 160 lines using the strict syntax. In a completely strict
syntax (where all equations are definitional), canonicity takes 44 lines of code. This corresponds
to the complete lack of transport hell, and can be achieved using rewrite rules [6] for equations
in the syntax or shallow embedding [12], both of which we consider cheating. The formalisation
is available online at https://bitbucket.org/akaposi/qiirt.

We would like to make more syntactic equalities definitional. Some are easy e.g. q[σ, t] = t,
some are tricky e.g. β law for function space which relies on full normalisation, and some are
hopeless, e.g. the functor law t[σ ◦ ρ] = t[σ][ρ]. The method clearly works for dependent types
(proper CwFs), and we believe that it can be generalised to arbitrary languages with bindings
defined as second order generalised algebraic theories [14, 3], thus obtaining first-order intrinsic
syntaxes with recursive substitutions.

A general definition of quotient inductive-inductive-recursive types is still lacking. If one
is able to formalise a QIIRT using pattern matching in Agda, then she should be able to first
turn it into a QIIT by making the equations of the function definition propositional. Then the
QIIT can be strictified by redefining the recursive operation using a displayed model just as we
did above for instantiation in the syntax.
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We introduce natural deduction rules for the well-known quantifiers @ and D and the less
known quantifiers N(“there is no x for which φpxq”) and

C

(“there is some x for which φpxq
doesn’t hold”) that are self-contained. With self-contained, we mean that the rules are just
about the quantifiers themselves and do not need other quantifiers or connectives to be ex-
pressed. As a by-product we have derivations of well-known classical tautologies that only
involve @ and _ that satisfy the subformula property (and thus do not rely on negation and
the law of excluded middle), e.g. @x.pP x_ Cq $ p@x.P xq _ C.

Our derivation rules for the quantifiers @, D, N,

C

are derived from the truth table natural
deduction approach (the method of deriving natural deduction rules for a connective c from
the truth table tc of c), as it has been introduced in [1, 2]. The rules come in two flavors:
(1) a complete natural deduction calculus for classical predicate logic; (2) a complete natural
deduction calculus for intuitionistic logic. In both cases one can choose which of the quantifiers
and propositional connectives one wants to have. The rules are self-contained, so adding a
specific quantifier doesn’t have any prerequisites on adding other connectives first.

The main results are the following.

1. Self-contained classical deduction rules for @, D, N,

C

.

2. A Tarskian-style semantics for @, D, N,

C

for which the classical rules are sound.

3. Classical derivations, e.g. of $ Dx.pDy.P yq Ñ P x and of @x.pP x _ Cq $ p@x.P xq _ C
that satisfy the subformula property.

4. Self-contained intuitionistic deduction rules for @, D, N,

C

.

5. A Kripke semantics for @, D, N,

C

for which the intuitionistic rules are sound.

6. Proofs (intuitionistic derivations) showing that␣Dx.φ and Nx.φ and @x.␣φ are equivalent,
and that Dx.␣φ $ C

x.φ and

C

x.φ $ ␣@x.φ, but not the other way around. The formula

C

x.φ expresses that “there is a counter-example to φpxq”, and it is intuitionistically in
between Dx.␣φ and ␣@x.φ.

For (3), we have the following classical derivation of $ Dx.pDy.P yq Ñ P x.

Dy.P y $ Dy.P y D-elCDy.P y $ P aDy.P y
$ pDy.P yq Ñ P aDy.P y
$ Dx.pDy.P yq Ñ P x

Here, D-elC is the classical D-elimination rule, which allows to conclude P aDy.P y from Dy.P y.
The aDy.P y is a special witness constant that plays the role of “the element d for which P d
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holds”. Syntactically, we add constants aDx.φ for all formulas φpxq (and similarly a@x.φ, a Nx.φ

and a C

x.φ), and we only deal with closed formulas.
Intuitionistially, these witness constants act as the eigenvariables in rules like D-elimination

and @-introduction, where there is a side-condition that a local variable should not occur in
other assumptions or the conclusion. The constant aDx.φ will play the role of this local variable
in the intuitionistic D-elimination rule (and similarly a@x.φ in the intuitionistic @-introduction
rule, and a Nx.φ and a C

x.φ will play similar roles). So, intuitionistically, these witness constants
don’t have a special semantics, which conforms with the fact that the well-known rules for @
and D are intuitionistic rules.

Classically, the witness constants have a specific semantics. We want to make sure that
@x.ψ ô ψpa@x.ψq, so for the interpretation in a modelM we have

rra@x.φss :“
"

an arbitrary element of D ifM ( @x.φ
some element d for whichM * φpdq ifM * @x.φ.

For aDx.ψ, we want to make sure that Dx.ψ ô ψpaDx.ψq, so for the interpretation in a model
M we have

rraDx.φss :“
"

some element d for whichM ( φpdq ifM ( Dx.φ
an arbitrary element of D ifM * Dx.φ.

Similarly, we make choices for rra Nx.ψss and rra C

x.ψss, to make sure that Nx.ψ ô ␣ψpa Nx.ψq,
and

C

x.ψ ô ␣ψpa C

x.ψq.
We give the classical deduction rules (indicated with C) and the intuitionistic deduction

rules (indicated with I) for @, D, Nand

C

. (If nothing is indicated the rules are classical
and intuitionistic.) If the rule has a “non-occurrence” side condition, we give the context Γ,
otherwise we omit it.
Deduction rules for @, where t is an arbitrary term. We abbreviate a@x.φ to a@.

$ @x.φ @-el$ φptq
$ φpa@q @-inC$ @x.φ

Γ $ φpa@q @-inI, if a@ R Γ
Γ $ @x.φ

Deduction rules for D, where t is an arbitrary term. We abbreviate aDx.φ to aD.

$ Dx.φ D-elC$ φpaDq
Γ $ Dx.φ Γ, φpaDq $ ψ D-elI, if aD R Γ, ψ

Γ $ ψ

$ φptq D-in$ Dx.φ
Deduction rules for N, where t is an arbitrary term. We abbreviate a Nx.φ to a N

$ Nx.φ $ φptq
N-el$ ψ

Nx.φ $ ψ φpa Nq $ ψ
N-inC$ ψ

Γ, φpa Nq $ Nx.φ
N-inI, if a NR Γ

Γ $ Nx.φ

Deduction rules for

C

, where t is an arbitrary term. We abbreviate a C

x.φ to a C

$ C

x.φ $ φpa Cq C

-elC$ ψ

Γ $ C

x.φ Γ $ φpa Cq C

-elI, if a CR Γ
Γ $ ψ

C

x.φ $ ψ φptq $ ψ C

-inC
ψ

φptq $ C

x.φ C

-inI$ C

x.φ

2
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Gazzari [4] proposed the calculus of Natural Calculation (NC), an extension of Gentzen’s [5]
Natural Deduction (ND) by proper term rules permitting a natural representation of calcula-
tions (inside of proofs). In NC, the first order terms t are first-class members of the calculus on
a par with formulae: they can be assumed and discharged; the elimination of the equality rule
permits calculation steps in the calculus transforming term premises into terms conclusions;
the evaluation of calculations is the corresponding introduction rule for the equality symbol.
A subtlety of NC is that the elimination of equality rule is given in two polarities: while the
positive version applied on an equation t = s permits the replacement of some occurrences of t
in a term r by the term s, the negative version “reads” the equation from the right to the left
and allows, correspondingly, the replacement of s by t. NC is complete and sound with respect
to the usual treatment of equality in ND and can, therefore, be seen as a natural alternative
to the this treatment. Indrzejczak [7] carried over Gazzari’s idea of term rules governing the
equality symbol to the sequent calculus.

Recalling the Curry-Howard correspondence [6, 9] associating (simply typed) λ-calculus
with ND, it is quite natural to ask, how a λ-calculus corresponding to NC would look like. A
first answer to this question is a version of the λ-calculus with (equality) calculations (LCC=)
corresponding to the (intuitionistic) fragment of NC over the implication (→), the universal
quantifier (∀) and the equality symbol (=)). Besides the usual proof terms P representing,
essentially, the standard parts of NC derivations, there are also calculation terms C in LCC= for
the representation of the calculations inside of the NC derivations. Proof terms and calculation
terms depend on each other and are defined in parallel (see figure 1).

The types of proof terms are, as expected, first order formulae (more precisely, the conclu-
sions of the derivations corresponding to the respective proof terms). The interesting case are
the calculation terms: it turned out that the type of a calculation term C is a first order term t.
Term assumptions of NC are represented by a special variable y; the term type t of the variable
y is the starting term of a calculation. The term type s of an arbitrary calculation term C is
the final term of the corresponding calculation, the evaluation of such a calculation from t to
s (represented by the proof term P ≡ λy.C) yields the result t = s, which becomes the type
of the proof term P . The precise formulation of some typing rules using the terms-as-types
paradigm is found in figure 2.1 The typing refers to sequents of the forms Γ; y : t ⊢ C : s and
Γ; ⊢ P : A.

It is worth mentioning that if we analyse our types, namely the first order terms and
formulae, as λ-expressions of simply typed λ-calculus (STLC) as done by Church [2], then
we obtain the following chains of dependencies, where ι is the type of individuals and o the
type of formulae: C : t : ι and P : A : o

1Notation: the expression r can be seen as a first order term r with “holes” (similar to the contexts introduced
in Barendregt [1], which are λ-terms with holes). In r[t] the holes are “filled” with the first order term t, in r[s]
with s. This way, the replacement of some occurrences of t in r by s can be given precisely. Gazzari [3] provides
a detailed analysis of this approach to the notions of positions and occurrences.
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Figure 1: Grammar of LCC=

(first order terms) t, s ::= v | c | f(t0, . . . tn)
(formulae) A,B ::= t = s | A→ B | ∀v.A

(calculation terms) C,D ::= y | P±C
(proof terms) P,Q ::= x | λy.C | λx.P | PQ | λv.P | Pt

Figure 2: Some Typing Rules for LCC=

Γ; y : t ⊢ C : s
(I=)

Γ; ⊢ (λy.C) : t = s
;

Γ; ⊢ P : s0 = s1 Γ; y : t ⊢ C : r[s0]
(E+

=)

Γ; y : t ⊢ P+C : r[s1]
;

Γ; ⊢ P : s0 = s1 Γ; y : t ⊢ C : r[s1]
(E−

= )

Γ; y : t ⊢ P−C : r[s0]

LCC= is equipped with the standard reduction rules β→ and β∀ expressing the elimination
of maximal formulae of the forms A → B and ∀v.A, respectively. In addition, it includes the
two rules

(λy.C)+D � [D/y]C (λy.C)−D � [D/y]C

where C, the dual calculation of C, is defined by recursion on C as y ≡ y and P±C ≡ [P∓y/y]C.
As the special variable y does not occur free in proof terms, and has a single free occurrence in

C, we can understand y as the the end-marker of a list of proof terms: C ≡ P±
1 (· · · (P±

n y) · · · ).
Hence calculation terms are a form of lists of proof terms, where each Pi may encapsulate
another calculation term, when Pi has the form λy.C ′. In this reading, y is the empty list,
λy.C may be written as a capsule < C >, C is the reverse of C, and [D/y]C the concatenation
of C with D, denoted C;D. Such lists β-reduce, as follows: < C >± D → (±C);D, where
+C ≡ C and −C ≡ C.

Our investigations of LCC= are work in progress. As a first result, we communicate strong
normalisation, which is established by using a translation into STLC and lifting strong normal-
isation this way from STLC into LCC=. The translation incorporates some different aspects:
(1) all terms (as types) are mapped to a single variable p (permitting the representation of the
undirected equality by the directed arrow), (2) the complexity of the translation of formulae (as
types) has to be lifted accordingly, (3) permutations of calculation terms due to β-reductions
are anticipated by the translation, which allows (4) to translate positive and negative applica-
tions of calculation terms into the unpolarised applications of STLC. Finally, (5) all traces of
the representation of the universal quantifier (in the proof terms) are eliminated. (The latter
idea is found in Sørensen and Urzyczyn [9, p. 219].)

We expect to prove as next result confluence of LCC=. Future work includes the extension
of LCC= to permit the treatment of relation symbols R (different from the equality symbol). In
particular, a substitution rule permitting the replacement of equal terms in relational formulae
(a rule of NC not considered yet) has to be represented in LCC=. Another interesting line of
investigation is the development of a calculus LCC<, where the fundamental calculations are
smaller-than calculations and where the equality becomes a defined concept (analogously to the
biimplication defined in terms of the implication).
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Abstract

The standard construction for realizability semantics of intuitionistic higher-order logic
is based on partial combinatory algebras as an abstract computation model with a single
computational effect, namely, non-termination. Many computational effects can be mod-
elled using monads, where programs are interpreted as morphisms in the corresponding
Kleisli category. To account for a more general notion of computational effects, we here
construct effectful realizability models via evidenced frames, where the underlying com-
putational model is defined in terms of an arbitrary monad. Concretely, we generalize
partial combinatory algebras to combinatory algebras over a monad and use monotonic
post-modules to relate predicates to computations.

Evidenced Frames (EF) provide a general framework for constructing realizability triposes,
including various computational effects that go beyond partial computation [4]. An evidenced
frame is a tagged variant of complete Heyting prealgebras, where instead of the binary preorder
relation φ ≤ ψ we have a ternary evidence relation φ

e→ ψ where e is considered as evidence
for the judgment φ ≤ ψ. Similarly, each of the components of a complete Heyting prealgebra
(reflexivity, transitivity, top, conjunction, implication, and universal quantification) are defined
in terms of their evidence.

The standard construction of realizability models for intuitionistic higher-order logic (iHOL)
interprets formulas as functions to subsets of the set of codes in a partial combinatory algebra
(PCA), constructing a tripos (called “the realizability tripos”) by using the codes as evidence
for the validity of entailments, and using the functional completeness of the PCA to construct
specific codes to realize the logical constants of iHOL. Evidenced frames can similarly be
used to construct a tripos, in a manner that separates the realizability construction into two
phases: first, constructing an EF from a PCA, and then constructing a tripos from the EF. This
separation gives us a single structure that explicitly relates the logical content to the computa-
tional content, and allows us to replace the PCA with other viable models, such as relational
combinatory algebras (RCAs) and stateful combinatory algebras (SCAs), as described in [3].

The main goal of this work is to generalize these results further by abstracting the details of
the specific computational effects, and instead relying on the ideas first introduced in [9] where
the effects are encapsulated behind some arbitrary monad. For this, RCA and SCA can be
considered as special cases of a more general notion: Monadic Combinatory Algebra (MCA).

Definition 1 (Monadic Combinatory Algebra). Given a strong monad T : C→ C, a Monadic
Applicative Structure (MAS) is an object of “codes” A together with an application Kleisli
morphism: α ∈ C (A× A, TA). We say that A is a Monadic Combinatory Algebra (MCA)
when A is a Turing object [2] in the Kleisli category of T , considered as a restriction category.

When C = Set, the definition coincides with a PCA for T the sub-singleton monad, with
an RCA for the power-set monad, and an SCA for the (increasing) state power-set monad.

In Set, an MCA can be more explicitly defined using an abstraction operator over terms.
Given a MAS A, the set En (A) of terms over A is defined by the grammar:

e ::= 0 | . . . | n− 1 | c ∈ A | e • e
∗This research is supported by Grant No. 2020145 from the United States-Israel Binational Science Founda-

tion (BSF)
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E0 (A) is the set of closed terms over A, and e [c] denotes the straightforward substitution.
Evaluation ν : E0 (A)→ T (A) is defined by induction on E0 (A) (using do-notation):

ν (c) := η (c) ν (ef • ea) := do cf ← ν (ef ) ; ca ← ν (ea) ; α (cf , ca)

Proposition 1 (Monadic Combinatory Algebra). Given a MAS A, A is an MCA if for each
n ∈ N there’s an abstraction operator ⟨λn. (−)⟩ : En+1 (A)→ A s.t:

〈
λn+1.e

〉
· c = η (⟨λn.e [c]⟩)

and
〈
λ0.e

〉
· c = ν (e [c]).

MCAs allow us to construct evidence for entailments in a similar manner to PCAs. For
PCAs, we consider predicates over codes and say φ

e→ ψ whenever the predicate ψ is satisfied
by the output of the application of e on an input which satisfies φ. In MCAs, while the input
of the application is a code, the output is wrapped inside T , so to relate a predicate over codes
to a predicate over wrapped codes, we need to use a post-module to “lift” predicates on C to
predicates on the Kleisli category of T .

Definition 2 (post-module). Given a monad T , a post-module is a tuple (P, P, ρ) where P is
a category, P : C → P is a functor, and ρ : PT ⇒ P is a natural transformation for which
ρ ◦ Pη = idP and ρ ◦ Pµ = ρ ◦ ρT .

When P = Prostop (the dual of the category of preordered sets), for any morphism f in C,
the function Pf has to be a monotonic, and similarly each component ρX : PX → PTX of ρ
has to be monotonic. So when P = Prostop we use the term monotonic post-module.

Proposition 2. Given a post-module (P, P, ρ), we get a functor Pρ : CT → P where CT is
the Kleisli category of T on C. Pρ is defined on objects by PρX = PX and on a morphism
f ∈ CT (A,B) by Pρf = ρB ◦ Pf .

Pρ can be considered as a categorical counterpart of Dijkstra’s weakest precondition trans-
former [5] Given an MCA A and a monotonic post-module (Prostop, P, ρ) we can define an

evidence relation on predicates on A. If φ,ψ ∈ P (A) and e ∈ C (1,A) we say that φ
e→ ψ

whenever φ ≤ Pρ (α ◦ ⟨e◦!, idA⟩) (ψ) (where ! is the unique morphism to the terminal object).
An interesting special case is when C = Set. In Set, whenever Ω is a preordered set, we have

the Proset functor PA = A→ Ω, with Pf (φ) = φ ◦ f . This functor can become a monotonic
post-module by using a monotonic T -algebra [1] ω : TΩ → Ω, yielding ρA (φ) = ω ◦ Tφ (for
φ : A → Ω). Equivalently, we can use a monad morphism into the monotone continuation
monad, as described in [8]. We already have a construction (formalized in Coq) of an EF based
on it. While capturing PCAs, RCAs, and SCAs, it seems not general enough to encompass other
interesting EFs, such as EFs of probabilistic computation, which would probably require T to
be the Giry monad [6]. Furthermore, it does not seem to encompass interesting post-modules
for the continuation monad.

To get a more bird’s-eye view of the necessary components needed to construct an EF, we
define a deductive system called EffHOL which extends iHOL with effectful terms along with
the operations: return to turn pure terms into effectful terms, bind to compose effectful terms,
and after to relate effectful terms with formulas. The after operation acts as a quantifier that
takes an effectful term e and a formula φ and returns the formula after x := e . φ, denoting
that after the computation of e, the formula φ holds. To relate EffHOL to iHOL, we require
EffHOL to have a special type of “codes” A, denoting programs in an untyped programming
language. A is required to have an effectful “application” operator ap which takes two pure
codes e and c and returns an effectful term ap (e, c), corresponding to the application of the
program denoted by e to the input denoted by c, yielding a computation (hence the result is
an effectful term). By combining ap with after we can use EffHOL to describe Hoare triples
{φ} e {ψ} [7]: ca | φ [ca] ⊢ after cr := ap (e, ca) . ψ [cr]
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When implementing or formalizing the syntax of a language with names and binders, one
challenging task is establishing and preserving well-scopedness. This is especially true when
implementing a dependent type checker, where types bind variables and terms with free variables
are evaluated. Luckily, if we implement this type checker itself in a dependently typed language,
we can work with well-scoped syntax, i.e. syntax that is statically known to be well-scoped by
the type system. For example, here is a minimal definition of well-scoped syntax for the untyped
lambda calculus in Agda:

data Var : (n : N) → Set where
zero : Var (suc n)
suc : Var n → Var (suc n)

data Term (n : N) : Set where
var : Var n → Term n
lam : Term (suc n) → Term n
app : Term n → Term n → Term n

Brady et al. [2003] have taught us that inductive families such as Var and Term need not
store their indices: the number n can be safely erased during compilation. However, to produce
efficient compiled code we should also ensure that operations on the syntax do not inspect the
scope at run-time. In a language with support for runtime irrelevance [McBride, 2016, Atkey,
2018] such as Idris 2 or Agda, we can enforce this property statically. But this reveals a problem:
to implement a function right : Var n → Var (k + n) that weakens a variable by adding k unused
variables to the scope, it must apply the suc constructor k times to its argument, so erasing k
is impossible! This example shows that using N as the type of scopes does not work.

This leads us to the question: is it possible to design types Scope : Set and Var : Scope → Set
such that all necessary operations on variables can be defined without inspecting the scope. To
make this question more concrete, let me list some operations that I consider ‘necessary’:

1. Decidable equality of variables: _ ?
=_ : (x y : Var α) → Dec (x ≡ y).

2. An empty scope ◦ : Scope such that Var ◦ ≃ ⊥.

3. A singleton scope • : Scope such that Var • ≃ ⊤.

4. A disjoint union _⋄_ : Scope → Scope → Scope such that Var (α ⋄ β) ≃ Var α ⊎ Var β.

5. A weakening coerce : α ⊆ β → Var α → Var β, where _⊆_ : Scope → Scope → Set is a
preorder on scopes.

6. For any p : α ⊆ β, a complement pC : Scope such that pC ⊆ β and pC ⊆ (trans p q)C

for any q : β ⊆ γ.

Instead of using N, let us represent scopes as binary trees where each leaf is either an empty
scope ◦ or a singleton •:

data Scope : Set where
◦ • : Scope
_⋄_ : Scope → Scope → Scope
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Rather than define Var and _⊆_ directly, we can define both in terms of a proof relevant
separation algebra [Rouvoet et al., 2020], a ternary relation on scopes that determines how the
names in the third scope are distributed over the first two.

data _▷◁_≡_ : (α β γ : Scope) → Set where
◦-l : ◦ ▷◁ β ≡ β
◦-r : α ▷◁ ◦ ≡ α
join : α ▷◁ β ≡ (α ⋄ β)
swap : α ▷◁ β ≡ (β ⋄ α)
⋄-ll : (α2 ▷◁ β ≡ δ) → (α1 ▷◁ δ ≡ γ) → (α1 ⋄ α2) ▷◁ β ≡ γ
⋄-lr : (α1 ▷◁ β ≡ δ) → (δ ▷◁ α2 ≡ γ) → (α1 ⋄ α2) ▷◁ β ≡ γ
⋄-rl : (α ▷◁ β2 ≡ δ) → (β1 ▷◁ δ ≡ γ) → α ▷◁ (β1 ⋄ β2) ≡ γ
⋄-rr : (α ▷◁ β1 ≡ δ) → (δ ▷◁ β2 ≡ γ) → α ▷◁ (β1 ⋄ β2) ≡ γ

Subscoping and variables can then be defined in terms of separation:

α ⊆ β = Σ (Erased Scope) (λ ([ γ ]) → α ▷◁ γ ≡ β)
Var α = • ⊆ α

Here, Erased A is a record type with constructor [_] : @0 A → Erased A. This definition of
_⊆_ makes it trivial to define the complement operation _C , since it is just the first projection
of the subscope proof.

An implementation of the operations listed above can be found at https://github.com/
jespercockx/scopes-n-roses. Compared to the code here, it follows Pouillard [2012] by
providing an abstract interface for working with scopes and support for named variables.

There are at least two still unresolved problems with this scope representation. The first one
is that separation proofs are not unique. In particular, we can map any proof of (α1 ⋄ α2) ▷◁ β ≡ γ
to another distinct proof of the same type:

enlarge : (α1 ⋄ α2) ▷◁ β ≡ γ → (α1 ⋄ α2) ▷◁ β ≡ γ
enlarge p = ⋄-ll join (⋄-rr join p)

As a result, the functions Var • → ⊤ and Var (α ⋄ β) → Var α ⊎ Var β are only retractions
rather than equivalences.

The second problem is that introduction of scope separation makes additional operations
hard or impossible to implement, such as the following property that we would like to have in
addition to the six above:

7. For two separations p : α1 ▷◁ α2 ≡ γ and q : β1 ▷◁ β2 ≡ γ of the same scope γ, a four-
way separation into scopes γ1, γ2, γ3, and γ4 such that γ1 ▷◁ γ2 ≡ α1, γ3 ▷◁ γ4 ≡ α2,
γ1 ▷◁ γ3 ≡ β1, and γ2 ▷◁ γ4 ≡ β2.

To address these problems, it may be necessary still to switch to a different representation
of scopes or scope representations. However, at the moment is is not even clear whether such
a representation even exists. This leads us to the following question: is possible to give an
implementation of scopes and scope separation that satisfies all the properties 1-7, while keeping
the size of separation proofs bounded by the size of the scopes? While the representation of
scopes presented here does not yet answer this question, the interface it offers provides new
insight into the kind of properties we can enforce by using dependent and quantitative types.
It is thus a first step towards an unexplored and exciting world of new variable representations.
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Generalized Algebraic Data Types (GADTs) are, as their name suggests, syntactic general-
izations of standard algebraic data types (ADTs) such as list, trees, etc. ADTs are known to
support an initial algebra semantics (IAS) in any category with enough structure [MA86]. This
IAS gives a semantic justification for the syntactic tools ADTs come with: pattern-matching,
recursion rules, induction rules, etc. One of the fundamental properties of an IAS is that the
interpretation of the type constructor defined by an ADT can be extended to a functor whose
action on morphisms interprets the ADT’s syntactic map function.

It is natural to explore a potential generalization of IAS to GADTs. However, mapping func-
tions over elements of GADTs is notorious for being only partially defined [JG08, JC22, JP19].
This compels us to seek the potential generalized semantics in categories with an inherent notion
of partiality.

In this work, we first define a categorical framework which captures a notion of partiality
that is computationally relevant. We consider the main feature of computationally relevant
partiality to be that functions propagate undefinedness. This is akin to how functions that are
strict in the sense of [BHA86] behave. Next, we show that any semantics in this framework
is trivial if we insist that the interpretations of the type constructors defined by GADTs must
extend to functors.

Given a category C, we write Mor(C) for its (possibily large) set of morphisms. Let us start
by recalling a classic definition that categorifies the notion of ideal in monoids.

Definition 1. A cosieve in a category C is a (possibly large) subset S ⊆ Mor(C) such that for
all morphisms f : A→ B and g : B → C in C, if f ∈ S then gf ∈ S.

Recall that a wide subcategory of a category C is a subcategory of C that contains all objects
of C (and thus all identity morphisms as well). Given any subcategory D of C, we denote D for
its complement, i.e., for the (possibly large) set Mor(C) \Mor(D).

Definition 2. A structure of computational partiality on a category C is a wide subcategory
whose complement is a cosieve.

In a category C equipped with a structure of computational partiality D, we call morphisms
of D total and those of D properly partial. The intuition behind Definition 2 is that D is the
collection of partial computations. Following that intuition, both identities and compositions
of total functions must be total functions, and, when a function yields an error on an input
there is no way to come back from the error by postcomposing with another function. Other
categorical frameworks capturing partiality include p-categories [RR88], (bi)categories of partial
maps [Car87], categories of partial morphisms [CO89], and restriction categories [CL02]. These
all give rise to structures of computational partiality.

Lemma 3. In a category equipped with a structure of computational partiality, split monomor-
phisms are always total.

Proof. Let s be a split monomorphism in a category C. Then there exists r such that rs = id.
If s were properly partial in a structure of computational partiality on C, then rs, and thus
id, would be properly partial as well. But id is total by definition, so it cannot be. Thus, s is
total.

141



Partiality Wrecks GADTs’ Functoriality Cagne and Johann

Now fix a category C equipped with a structure of computational partiality D. Suppose D
has finite products, and write 1 for the terminal object of D. An interpretation J K of (a language
with) GADTs in (C,D) maps each closed type τ of the language to an object JτK of C, and each
function f : τ1 → τ2 → . . . → τn → τ to a total morphism JfK : Jτ1K×Jτ2K×· · ·×JτnK→ JτK
in D. We require that J K maps the unit type > to 1 and compositions of syntactic functions
to the compositions of their interprations in C. Given a n-ary GADT G, a functor G : Cn →
C manifests G relative to J K if the action of G on every object (Jτ1K, . . . , JτnK) is precisely
JG τ1 . . . τnK.
Theorem 4. Let C be a category equipped with structure of computational partiality D. Suppose
J K is an interpretation of GADTs in (C,D) relative to which each GADT can be manifested by
a functor. Then JτK ' 1 for all non-empty closed types τ .

Proof. Among the GADTs in our language, we have

data Equal :: * → * → * where

Refl :: ∀ α. Equal α α

We can use the recursion rule of GADTs to define:

trp :: ∀ {α β}. Equal α β → α → β
trp Refl x = x

trp−1 :: ∀ {α β}. Equal α β → β → α
trp−1 Refl y = y

Instantiating α and β to the closed types τ1 and τ2, respectively, the anonymous function
λ x → trp−1 Refl (trp Refl x) reduces to the identity function on τ1. By the uniqueness
property of functions defined by recursion on GADTs, λ p → (λ x → trp−1 p (trp p x))

reduces to the identity on τ1 for any input p. Semantically this translates to the following
composition being idJτ1K for any morphism p : 1→ JEqual τ1 τ2K in D:

Jtrp−1 {α = τ1} {β = τ2}K◦(p×idJτ2K)◦ϕJτ2K◦Jtrp {α = τ1} {β = τ2}K◦(p×idJτ1K)◦ϕJτ1K

Here, ϕX is the canonical isomorphism X ' 1×X.
Now let τ be a non-empty closed type and t be a closed term of type τ . We abuse notation

and write JtK : 1→ JτK for the morphism Jλ _ → tK in D. Since every morphism with domain
1 in D is a split monomorphism, so is JtK. Since there exists a functor JEqualK : C2 → C
manifesting Equal relative to J K, and since split monomorphisms are preserved by all functors,
JEqualK(JtK, id1) is a split monomorphism as well. By Lemma 3, JEqualK(JtK, id1) is a morphism
in D from JEqual > >K to JEqual τ >K. Consider the following morphisms in D:

s = Jtrp−1 {α = τ} {β = >}K ◦ (p× id1) ◦ ϕ1 : 1→ JτK
r = Jtrp {α = τ} {β = >}K ◦ (p× idJτK) ◦ ϕJτK : JτK→ 1

The observation at the end of the previous paragraph instantiated with τ1 = τ , τ2 = 1 and
p being the morphism JEqualK(JtK, id1) ◦ JRefl {α = >}K in D shows that sr = idJτK. The
composition rs is necessarily id1 because it is in D (i.e., is total), and 1 is terminal in D. This
explicitly gives the isomorphism announced in the statement of the theorem.

The result holds in particular for D = C. In this case, it proves that any naive extension of
IAS for ADTs to GADTs that interprets GADTs as functors on C directly must be trivial.
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Introduction. Intersection Types (IT) were introduced in [CD78] to overcome the limitations
of Curry’s type discipline and enlarge the class of terms that can be typed. This is reached by
means of the intersection type constructor. This way, one can assign a finite set of types to a
term, thus providing a form of finite polymorphism. Intersection types characterize termination,
that is, they type all terminating λ-terms. Additionally, IT have shown to be remarkably flexible,
since different termination forms can be characterized by tuning details of the type system. IT
have been mostly developed in the realm of the pure λ-calculus, notable exceptions being [BDL18,
DLFRDR21] featuring probabilistic choice, and [DP00, DCRDR07, dLT21a, dLT21b] featuring
state/references. However, current programming languages are deeply effectful, raising exceptions,
performing input/output operations, sampling from distributions, etc. Reasoning about effectful
programs becomes a challenging goal since their behaviour becomes highly interactive, depending
on the external environment.

The leading question we try to answer is: can IT be scaled up in the case of effectful λ-calculi,
in a modular way? We answer this question in the affirmative by developing a general monadic
intersection type system for a computational λ-calculus [Mog91] with algebraic operations à la
Plotkin and Power [PP01]. To achieve this result, we combine state-of-the-art techniques in
monadic semantics, intersection types, and relational reasoning, in a novel and nontrivial way.

The Type System. The target calculus of our work is an effectful extension of the call-by-
value λ-calculus with effect triggering operations op taken from a signature Σ:

Val. V ∋ v, w ::= x
∣∣ λx.t Comp. C ∋ t, u ::= v

∣∣ vt
∣∣ op(t1, . . . , tn)

We can give operational semantics to this calculus in monadic style [PP01, GF21]. In
particular, reduction is a (monadic) function 7→: C→ T (C), where (T, η, >>=) is a monad. The
intersection type system, parametric in the underlying monad T , is designed in such a way
that not only terms, but also types are monadic. From the informal call-by-value translation of
intuitionistic logic into linear logic combined with Moggi’s translation

A→ B ∼= !A⊸ T (!B)

one can derive the following grammar for types:

Value Types A ∋ A ::= I →M

Intersection Types I ∋ I ::= {A1, . . . , An} n ≥ 0

Monadic Types M ∋M,N ::= T (I)

The type assignment system in Fig. 1 is given by a relation ⊢ : C +→ T (I) between terms and
types, hence leaving to a situation similar to the one of operational semantics. The analogy is
no coincidence: as we obtain monadic operational semantics relying on the theory of monadic
relations, the very same theory allows us to define monadic type system, a monadic typing
relation associating terms with monadic types. Differently from the pure setting, in which
intersection types characterize termination of programs, in the effectful setting we would like to
characterize all the effects produced during the evaluation via the type system.
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A ∈ I
Γ, x : I ⊢ x : A

var
[Γ ⊢ v : Ii →Mi]1≤i≤n Γ ⊢ t : N supp(N) ⊆ {I1, ..., In}

Γ ⊢ vt : N >>= (Ii 7→Mi)
app

Γ, x : I ⊢ t :M
Γ ⊢ λx.t : I →M

abs
[Γ ⊢ ti :Mi]1≤i≤n

Γ ⊢ op(t1, . . . , tn) : gop(M1, . . . ,Mn)
op

[Γ ⊢ v : Ai]i∈F
Γ ⊢ v : {Ai}i∈F

int Γ ⊢ v : I
Γ ⊢ v : η(I)

unit

Figure 1: The monadic intersection type system. By supp(e) we indicate the subset of A from
which e ∈ T (A) is built, and by gop : T

nA→ TA the algebraic operation corresponding to the
syntactic operation op.

Theorem 1. Let t be a λ-term. Then t⇓ if and only if ⊢ t :M . Moreover obs(t) = obs(M).

Here, obs(·) : T (A)→ T (1) is the function that returns the observable behavior of a monadic
object (extended to terms as obs(t) := obs(e), when t ⇓ e ∈ T (V)). Indeed, we obtain such a
result by generalizing standard soundness and completeness theorems, via abstract relational
techniques, allowing for the lifting of subject reduction, expansion, and the reducibility argument.

Some interesting notions of observation, such as the probability of convergence in probabilistic
calculi, are naturally infinitary. For this reason, we extend our type system to capture infinitary
behaviors. Interestingly, we need to add just one rule to the previous (finitary) system, namely:

Γ ⊢ t : ⊥ bot

i.e. the one that can type every term with the bottom of the underlying monad (the latter has
now to satisfy some domain theoretic properties, such as being dcppo-enriched). Then, a term
can be typed in many ways and the characterization of the effectful behavior is obtained as the
limit of the approximations.

Theorem 2. Let t be a λ-term. Then obs(t) =
⊔{obs(M) | ⊢ t :M}

Limits. Algebraic effects cover many interesting computational effects, such as nondeterminism,
probability, state, and exception throwing. However, our approach is intrinsically limited to
a class of well-behaving monads called weakly cartesian (morally, those for which there is no
loss of information when the bind is applied). Moreover, if one sticks with the finitary case,
where the natural notion of convergence is termination, operations that erase arguments are not
allowed, since they break the completeness of the system. Still, this restriction can be removed
considering the infinitary semantics.

Future Work. At least two interesting (and non trivial) perspectives are opened by this work.
The former is the application of our system to higher-order model checking [KO09, Kob09]
of effectful programs. The latter is the idea of measuring the precise cost of the evaluation
of typed terms through their type derivation. This requires switching to the non-idempotent
setting [dC18, AGK20], and considering monadic costs (e.g. the expected cost in the probabilistic
setting, or the maximum cost in must nondeterminism).

2
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Dependently typed languages such as Coq or Agda are very convenient tools to program with
strong invariants and develop mathematical proofs. However, a user might be inconvenienced by
things such as the fact that n and n+0 are not considered definitionally equal, or the inability to
postulate one’s own constructs with computation rules such as exceptions [PT18]. Coq modulo
theory [Str10] solves the first of the two problems by extending Coq’s conversion with decision
procedures, e.g., for linear integer arithmetic. Rewrite rules can be used to deal with directed
equalities for natural numbers, but also to implement exceptions that compute. They were
introduced in Agda [CA16] a few years ago, and later extended to provide more guarantees
with a modular confluence checker [CTW19, CTW21].

We present a work-in-progress extension1 of Coq which supports user-defined rewrite rules.
While we mostly follow in the footsteps of the Agda implementation, we also have to face new
issues due to the differences in the implementation and meta-theory of Coq and Agda. The
most prominent one being the different treatment of universes as Coq supports cumulativity
but no first-class universe levels. We will take advantage of this talk to expose our ideas on
how to solve the different issues that arise when adding user-defined rewrite rules to a proof
assistant by integrating2 rewrite rules in MetaCoq [SAB+20, SBF+20], building on previous
work [CTW19, CTW21].

Rewrite Rules in Coq. We only support rewrite rules whose head symbol is declared as
such with the Symbol command, which essentially declares an axiom for which we can postulate
computation rules. Rules are then declared using the Rewrite Rule command. For instance:

Symbol pplus : N → N → N.
Rewrite Rule [ n ] ⊢ pplus 0 n ⇒ n.
Rewrite Rule [ n ] ⊢ pplus n 0 ⇒ n.
Rewrite Rule [ n m ] ⊢ pplus (S n) m ⇒ S (pplus n m).
Rewrite Rule [ n m ] ⊢ pplus n (S m) ⇒ S (pplus n m).

will declare the parallel plus that computes on both its arguments. On the left of the turnstile
(⊢) variables are quantified and can furthermore be annotated with their type. We will illustrate
the features and specificities of our implementation below, while exposing the challenges that
come with them.

Non-Linearity. For now, we restrict our rewrite rules to be left-linear: each variable can
only appear once on the left-hand side of the rule. This appears like a very strong limitation
as certain rules are only well typed in presence of non-linearity: e.g., the computation rule
for the J eliminator. This can be circumvented by forcing certain variables to be equal to an
expression:

Rewrite Rule [ A u P t (v := u) (B := A) (w := u) ] ⊢ J A u P t v (eq_refl B w) ⇒ t.

1Available at https://github.com/yannl35133/coq/tree/rewrite-rules-TYPES, examples can be found in
the test-suite/success/rewrule.v file.

2Available at https://github.com/yannl35133/metacoq/tree/rewrite-rules-TYPES
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These equalities are only used to help elaboration figure out implicits in the right-hand side of
the rule. They bear no meaning on the rewrite rule itself. For J, this is not a problem, because
all well-typed instances of the left-hand side will actually verify these identities, but it is not a
guarantee in general. Take for instance the following symbol and rule:

Symbol f : ∀ b, if b then N else B. Rewrite Rule [ b := true ] ⊢ f b ⇒ 23.

The rule will even trigger for the term f false meaning that we have something of type B which
reduces to 23, a violation of subject reduction: the rule is simply not type preserving. We
will now see that with universes we can run into more subtle problems with respect to type
preservation.

Universes and Cumulativity. As exposed before, one major difference between Coq and
Agda is the treatment of universes. In Coq, cumulativity means that sharing a common type for
the left-hand side and the right-hand side (i.e., the requirement to postulate their propositional
equality) is not sufficient to ensure type preservation, even when the rules are confluent.3 A
counter-example would be the following :

Symbol id : Type@{v} → Type@{u}.
Rewrite Rule [ ] ⊢ id Type ⇒ Type@{u}.

Both sides share the super type Type@{1 + max u v}, but no constraints are inferred from the
definition of the rule: it works for any level v and u. In particular it can be used to map terms
of type Type@{u+1} to Type@{u}. This allows the user to create a term U : U when they might
have thought assuming Type → Type was harmless. Not only does this break subject reduction,
but also consistency. This raises two challenges to overcome: (1) theoretically we have to come
up with a modular criterion to ensure type preservation of the typing rules; (2) in practice we
need to be able to collect universe constraints not only on the symbol declaration but also in
the rewrite rules themselves.

Reduction Strategies. Coq also features several reduction strategies such as call-by-value
(cbv), call-by-name (cbn) or call-by-need (lazy), which are furthermore highly parametrisable
(e.g., they can unfold constants or not). Naively grafting a function that matches left-hand
sides of rules on top of one of these reduction machines will often lead to incompleteness issues:
(1) one has to ensure that subterms (function arguments) are in weak-head-normal form before
matching them, which is not the case by default with cbn or lazy; (2) a function argument
brought to normal form, when substituted into another term, may create a deep redex if the
pattern is itself deep, which may cause problems with cbv. This means that we need to be
careful when adding rewrite rules to those, otherwise users may face the frustration of having
to type cbn several times to fully evaluate redices in a term.

In fact, we believe that proving such properties about reduction strategies would be nice
additions to the MetaCoq project. One final challenge we have to face when dealing with
rewrite rules in MetaCoq is that we do not know a priori that the rules do not break strong
normalisation, while the current implementation and verification in MetaCoq relies on this
assumption [SBF+20]. We plan to solve this problem simply by no longer relying on this
assumption. Instead, we believe that we can first define the reduction machine and the type
checker as partial functions so that we may prove correctness on all terminating inputs, using
ideas similar to the Braga method [LWM21].

3When the system has uniqueness of type, like Agda, confluence is sufficient.
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Type Theory with Computational Assumptions. Proceedings of the ACM on Programming
Languages, 2021.

[LWM21] Dominique Larchey-Wendling and Jean-François Monin. The Braga Method: Extracting
Certified Algorithms from Complex Recursive Schemes in Coq. In Proof and Computation
II, pages 305–386. WORLD SCIENTIFIC, August 2021.
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Introduction. Power types were first introduced in a seminal paper by Cardelli and formu-
lated the notion of a ‘type of subtypes’, analogous to that of a power set in set theory. [2] This
not only explicitly mechanised bounded quantification, a form of polymorphism wherein the
type quantifier is restricted to only subtypes of a given type, but it also served as a method for
both the type theory to talk about its own subtyping, and for the subtyping relation to be com-
pleted subsumed by the typing relation (by considering A ≤ B as a shorthand for A : Power(B).
The type theory in Cardelli’s work promoted more powerful expression over more well-behaved
metatheoretical properties, such as including Type : Type, which induces logical inconsistency
and non-normalisation [4, 5].

Subtype universes were initially introduced by Maclean and Luo as a way of formalising
the notion of a ‘type of subtypes’ for a well-studied logical type theory equipped with coercive
subtyping [9]. This extended type theory has several nice metatheoretical properties such as
strong normalisation, but this implementation excluded certain kinds of subtyping relations
from being used, and the formulation was wrapped up in the complexities of the underlying
type theory’s universe hierarchy. In particular, the implementation excludes (in layman’s terms)
subtyping relations where there are any occurrences of U , or wherein the supertype inhabits a
type universe of a smaller level than that of the subtype.

We consider a simpler yet more expressive reformulation of subtype universes by amending
a logical type theory equipped with coercive subtyping with the following rules

Γ⊢B type

Γ⊢U(B) type

Γ⊢A ≤c B
Γ⊢⟨A, c⟩ : U(B)

and two operators σ1 and σ2 which respectively extract the type and coercion of a subtype
universe’s ‘pair’.

Expressive Subtype Universes. Prior work on subtype universes included the restriction
that a subtype must inhabit a ‘smaller’ type universe than that of the supertype, and likewise
must not include subtype universes. This was necessary in Maclean and Luo’s work on extending
UTT[C] with subtype universes as their proof of logical consistency and strong normalisation
was via an embedding of their extended type theory back into UTT[C], primarily due to the pre-
existing hierachy of type universes through which UTT controls its predicative type structure.

This is not necessary in general, however. By considering extending a theory which only
possesses an impredicative type universe of propositions Prop, such a type theory has the ability
to use higher-level types on either side of the subtyping relation, such as U(A) ≤c A. Combined
with the new operator that extracts a given coercion from a subtyping relation, these new
features significantly expand on expressiveness of the type theory, allowing for more subtyping
relations than Maclean and Luo’s previous implementation.

There still remains the difficulty of proving that a collection of subtyping judgements and
inference rules are coherent - “that every possible derivation of a statement Γ⊢ a : A has
the same meaning.” [10] The difficulty of this task is increased for subtype universes when
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we consider subtyping judgements that include subtype universes, as the coherency of these
judgements may now be dependent on other subtyping judgements.

Applications. Subtype universes, in a similar vein to power types, can be used to explicitly
mechanise bounded quantification by considering λ(X ≤ A).M as syntactic sugar for λ(x :
U(A)).[σ1(x)/X]M , and as such have a variety of uses in modelling programming languages.
Additionally, the ability to extract coercions allows for more complex subtyping judgements
and inference rules, allowing for a more rich type theory. This has been particularly insightful
in formalisation of mathematics, wherein subtype universes have been rudimentarily useful in
modelling the topologies of various spaces.

In particular, these additions have proven useful in natural language semantics, wherein
types can be interpreted as common nouns and terms as specific instances of these nouns.
Here, subtype universes can be used to model subsective adjectives. If CN is the universe of
common nouns, then where previously we may have had a term skillful : Π(A : CN).A→ Prop,
we may wish to exclude instances such as skillful(chair). By instead considering skillful : Π(x :
U(Human)).σ1(x) → Prop instead, we preserve desired terms such as skillful(⟨doctor, c⟩), and
exclude undesired terms such as skillful(⟨chair, c′⟩).

Metatheory. We consider a subset τ of UTT[C] with some basic types such as 0, 1 and N,
dependent pair types and dependent function types, and no type universes other than Prop.. We
have shown that extending τ with any collection of coherent subtyping judgements C preserves
any underlying strong normalisation and logical consistency. This was done by considering
an embedding of τ [C] into its parent system UTT[C], which has been proven to be strongly
normalising and logically consistent [7, 8]. The key idea is that subtype universes U(B) in our
type theory should correspond to types of the form Σ(X : Typei).X → B in UTT[C].

Describing this embedding is relatively easy when the subtype in a subtyping rule includes
fewer uses of U than the supertype. We call subtyping judgements which satisfy this property
‘monotonic’, and show that a type theory with subtype universes extended only by coherent and
monotonic C can trivially be embedded into UTT[C]. For a subset of non-monotonic subtyping
rules, we can alter our embedding - if the difference in the number of appearances of U on
either side of a subtyping rule is always bounded by some k, then we can instead ‘shift’ our
embedding by sending U(B) to Σ(X : Typei+k).X → B instead.

Conclusion. Our work on generalising and extending subtype universes has allowed for a
greater variety of subtyping relations while preserving strong normalisation and logical consis-
tency. There are some open questions we wish to explore further: for example, including a
universal supertype Top often presents metatheoretic issues, [3] [10] especially in conjunction
with coercive subtyping, but it may be possible to develop structured or predicative alternatives
which do not.

Our work has also explored models of point-set topology using subtype universes, interpret-
ing U(B) as the topology of the space B: we would like to further refine this idea, and analyse
the role that coercive subtyping plays in this. Finally, Aspinall’s work on λPower, a predicative
type theory using power types, has proven fruitful with results such as strong normalisation
but has run into difficulties with certain metatheoretical proofs [1]. Hutchins’ work on pure
subtype systems generalises several subtyping to subsume typing entirely and has proven a very
powerful system impredicative system without strong normalisation but with similar difficulties
in the metatheory [6]. A better understanding of the complexities of these systems will be key
going forward.

2
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Introduction Nominal techniques [8] provide a mathematically principled approach to dealing
with names and variable binding in programming languages. However, integrating these ideas in
a practical and widespread toolchain has been slow, and we perceive a chicken-and-egg problem:
there are no users for nominal techniques, because nobody has implemented them, and nobody
implements them because there are no users. This is a pity, but it leaves a positive opportunity
to set up a virtuous circle of broader understanding, adoption, and application of this beautiful
technology.

This paper explores an attempt to make nominal techniques accessible as a library in the
Agda proof assistant and programming language [9], which can be viewed as a port of the first
author’s Haskell nom package [6], although that would be an injustice as its purpose is two-fold:

1. provide a convenient library to use nominal techniques in Your Own Agda Formalisation
2. study the meta-theory of nominal techniques in a rigorous and constructive way

A solution to Goal 1 must be ergonomic, meaning that a technical victory of implementing
nominal ideas is not enough; we further require a moral victory that the overhead be accept-
able for practical systems. Apart from this being a literate Agda file, our results have been
mechanised and are publicly accessible: https://omelkonian.github.io/nominal-agda/.
Nominal setup We conduct our development under some abstract type of atoms, satisfying
certain constraints, namely decidable equality and being infinitely enumerable.1. We model this
in Agda using module parameters, which could be instantiated with a concrete type:

module _ (Atom : Type) {{ _ : DecEq Atom }} {{ _ : Enumerable∞ Atom }} where
N: (Atom → Type) → Type
Nϕ = ∃ λ (xs : List Atom) → (∀ y → y /∈ xs → ϕ y)

The Nquantifier enforces that a predicate holds for all but finitely many atoms, and swapping
of two atoms can be performed on any type, subject to some laws:
record Swap (A : Type) : Type where

field swap : Atom → Atom → A → A
L_↔_M_ = swap

instance
↔Atom : Swap Atom
↔Atom .swap x y z =

if z == x then y else if z == y then x else z
record SwapLaws : Type where

field swap-id : L a ↔ a M x ≡ x
swap-rev : L a ↔ b M x ≡ L b ↔ a M x
swap-sym : L a ↔ b M L b ↔ a M x ≡ x
swap-swap : L a ↔ b M L c ↔ d M x ≡ L L a ↔ b M c ↔ L a ↔ b M d M L a ↔ b M x

We only need to provide instances for the base case of atoms (whence the decidable equality),
and abstractions (coming up next). From this we can systematically derive swapping definitions
for all user-defined types, using a compile-time macro/tactic (c.f. the case study later on).

One particularly useful family of axioms in equivariant ZFA foundations [5] is that swapping
distributes everywhere (constructors, functions, type formers) with the special case for swapping
itself being swap-swap. It is consistent to axiomatize this generalized notion of distributivity
for swap and we do so by means of a tactic that realises this axiom scheme. Most of the time

1…also known as “unfiniteness” in a recent nominal mechanization of the locally nameless approach [10].
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we are working with types that have finite support, expressed using the ’new’ quantifier: N²
λ a b → swap b a x ≡ x. We can then define equivariant elements that admit the empty
support, as well as an operation to generate fresh atoms freshAtom : A → Atom (whence the
module requirement that atoms are infinitely enumerable). Agda is constructive, so freshAtom
is constructive too, which is different from how fresh atoms are used in (non-constructive) set
theories. An abstraction is just a pair of an atom and an element:

Abs A = Atom × A

conc : Abs A → Atom → A
conc (a , x) b = swap b a x

instance
↔Abs : Swap (Abs A)
↔Abs .swap a b (c , x) = (swap a b c , swap a b x)

Note that we can also provide a correct-by-construction and total concretion function. In nom-
inal techniques based on Fraenkel-Mostowski set theory [8] this is impossible, and it seems to
be a novel observation that in a constructive setup a total concretion function is fine.

Case study Once equipped with all expected nominal facilities, in particular atoms and atom
abstractions, it is easy to define terms in untyped λ-calculus without mentioning de Bruijn
indices or anything of that sort. For the sake of ergonomics and efficient theorem proving,
we provide a meta-programming macro — based on elaborator reflection [2] — that is able to
automatically derive the implementation of swapping of any type based on its structure.
data Term : Type where

‘_ : Atom → Term
_·_ : Term → Term → Term
λ_ : Abs Term → Term

unquoteDecl ↔Term =
DERIVE Swap [ quote Term , ↔Term ]

data _≈_ : Term → Term → Type where
ν≈ : ‘ x ≈ ‘ x
ξ≈ : L ≈ L’ → M ≈ M’ → L · M ≈ L’ · M’
ζ≈ : N(λ x → conc f x ≈ conc g x) → λ f ≈ λ g

We can naturally express α-equivalence of λ-terms using the Nquantifier and manually prove
the aforementioned swapping laws and the fact that every λ-term has finite support. However,
these all admit a systematic datatype-generic construction and we are currently in the process
of automating them. The rest of the development remains identical to the mechanization
presented in the PLFA textbook [14], particularly the ‘Untyped’ chapter. Meanwhile, the
gnarly ‘Substitution’ appendix involving tedious index manipulations is now replaced by the
usual nominal presentation of substitution, alongside a few general lemmas about equivariance
and support:

_[_:=_] : Term → Atom → Term → Term
(‘ x) [ a := N ] = if x == a then N else ‘ x
(L · M) [ a := N ] = L [ a := N ] · M [ a := N ]
(λ f ) [ a := N ] = λ z ⇒ conc f z [ a := N ] where z = freshAtom (a :: supp f ++ supp N)

We still have a few remaining lemmas to prove to fully cover the PLFA chapter on untyped
λ-calculus, but we do not see any inherent obstacles to completing the confluence proof. A
good next step would be to formalise a proof of cut elimination for first-order logic, since this
involves name-abstraction on both terms and proof-trees.

Related work There have been previous nominal mechanizations in Agda that focus on the
concrete instance of the untyped λ-calculus and include a proof of confluence [4, 3]. Ours
closely matches the non-mechanized formulation in [7], which the Haskell nom package [6] then
implements. Another representation of nominal sets in Agda [1] is preliminary and we would
hope that our approach is more ergonomic and more amenable to scaling up. We treat our Agda
library as a complement to other nominal implementations (in FreshML [12], Isabelle/HOL [13],
and Nuprl [11]) that is ergonomic, lightweight, accessible, and illustrates the practical compat-
ibility of nominal techniques within a constructive type system.
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Introduction Distributed ledgers nowadays manage substantial monetary funds in the form
of cryptocurrencies such as Bitcoin, Ethereum, and Cardano. For such ledgers to be safe,
operations that add new entries must be cryptographically sound—but it is less clear how to
reason effectively about such ever-growing linear data structures.

We view distributed ledgers as computer programs, that, when executed, transfer funds
between various parties. As a result, familiar program logics, such as Hoare logic and separation
logic, can be defined in this novel setting. Borrowing ideas from concurrent separation logic,
this enables modular reasoning principles over arbitrary fragments of any ledger. Our results
have been mechanised in the Agda proof assistant [3] and are publicly available:

https://omelkonian.github.io/hoare-ledgers

A simple linear ledger We start by studying the simplest form of ledger; assuming an
abstract set of participants P, programs are linear sequences of transactions and states S keeps
track of everyone’s account balance in a finite map.

T := P n−→ P
L := ϵ | T ;L
S := P 7→ Z

Alice pays Bob 5;
Alice pays Carroll 10;
Dana pays Alice 2;
...

It’s straightforward to define denotational, operational, and axiomatic semantics, as well as
prove them equivalent to one another. Transactions and ledgers take denotations in the same
domain, namely state transition functions d(t) : S → S. For the sake of brevity, we refer to the
Agda development for the full definitions and only present the essential Hoare rules:

stop{P} ϵ {P}
{P} l {Q}

step{P ◦ d(t)} t; l {Q}

{P} l1 {Q} {Q} l2 {R}
app{P} l1 ++ l2 {R}

send
{p1 7→ n} p1

n−→ p2 {p2 7→ n}

These should remind you of the corresponding rules for assignment and sequencing in imperative
programs from traditional Hoare logic. It is natural to form chains of these Hoare-style state
predicates like so: {λσ. σ(A) = 2} A

1−→ B {λσ. σ(A) = 1} A
1−→ C {λσ. σ(A) = 0}. However,

each step operates on the whole state which is not modular and would not scale to ever-growing
blockchain ledgers.
Towards separation We can remedy this by exploiting the monoidal structure of the state
space (i.e. pointwise addition of maps ⊕), leading to the following notion of separating con-
junction [4] and the usual Hoare rules of (concurrent) separation logic:

(P ∗Q)(σ) := ∃σ1. ∃σ2. P (σ1) ∧ Q(σ2) ∧ σ = σ1 ⊕ σ2

{P} l {Q}
frame{P ∗R} l {Q ∗R}

{P1} l1 {Q1} {P2} l2 {Q2} par{P1 ∗ P2} l1 || l2 {Q1 ∗Q2}
∗Funded by Input Output (iohk.io) through the Edinburgh Blockchain Technology Lab.
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Notice the lack of the usual freshness side-conditions, rendering our logic compositional, i.e. a
proof about a large ledger can be obtained from proofs about its individual parts.
Extending to the UTxO case If we now try to extend our technique to previous formal-
isations of UTxO-based blockchain ledgers [1, 2], we are forced to introduce freshness side-
conditions when composing disjoint (]) sub-ledgers and end up with non-compositional rules:

{P} l {Q} l # R
frame{P ∗R} l {Q ∗R}

{P1} l1 {Q1} {P2} l2 {Q2} l1 # P2 l2 # P1 par{P1 ∗ P2} l1 || l2 {Q1 ∗Q2}

This is due to the fact that, in contrast to the previous by-value formulation, UTxO transactions
reference previous unspent outputs by name (requiring the transaction’s hash and an index into
its outputs), so we need to explicitly track names which enforces a coarse level of modularity.
Abstract UTxO We propose a novel UTxO model that embraces the initial value-centric
perspective, where previous unspent outputs are only referred to by value (i.e. the monetary
value and the script that locks it). This means we now hold bags rather than maps in our state
space, abstracting away from the explicit names and hash references of the concrete UTxO
model. By exploiting the monoidal nature induced by pointwise bag addition/inclusion, we
regain our compositional Hoare rules free of side-effects, as demonstrated in the example below
that contrasts a monolithic proof using frame (left) to a modular proof combining two smaller
proofs using par (right):

{A 7→ 1 ∗B 7→ 0 ∗ C 7→ 0 ∗D 7→ 1}
t1 a frame(C 7→ 0 ∗D 7→ 1, send)

{A 7→ 0 ∗B 7→ 1 ∗ C 7→ 0 ∗D 7→ 1} ≈
{C 7→ 0 ∗D 7→ 1 ∗A 7→ 0 ∗B 7→ 1}

t2 a frame(A 7→ 0 ∗B 7→ 1, send)
{C 7→ 1 ∗D 7→ 0 ∗A 7→ 0 ∗B 7→ 1} ≈
{A 7→ 0 ∗B 7→ 1 ∗ C 7→ 1 ∗D 7→ 0}

t3 a frame(C 7→ 1 ∗D 7→ 0, send)
{A 7→ 1 ∗B 7→ 0 ∗ C 7→ 1 ∗D 7→ 0} ≈
{C 7→ 1 ∗D 7→ 0 ∗A 7→ 1 ∗B 7→ 0}

t4 a frame(A 7→ 1 ∗B 7→ 0, send)
{C 7→ 0 ∗D 7→ 1 ∗A 7→ 1 ∗B 7→ 0} ≈
{A 7→ 1 ∗B 7→ 0 ∗ C 7→ 0 ∗D 7→ 1}

{A 7→ 1 ∗B 7→ 0 ∗ C 7→ 0 ∗D 7→ 1}

{A 7→ 1 ∗B 7→ 0}
t1 a send

{A 7→ 0 ∗B 7→ 1}
t3 a send

{A 7→ 1 ∗B 7→ 0}

{C 7→ 0 ∗D 7→ 1}
t2 a send

{C 7→ 1 ∗D 7→ 0}
t4 a send

{C 7→ 0 ∗D 7→ 1}

a par

{A 7→ 1 ∗B 7→ 0 ∗ C 7→ 0 ∗D 7→ 1}

Sound abstraction Even though we believe our abstract UTxO model might be a better
foundation for a next-generation blockchain, we still wish to guarantee that it is sound to reason
at this higher level in order to prove properties of concrete UTxO ledgers that currently exist.
To formulate soundness, we start by relating concrete (C) and abstract (A) states, i.e. collect all
values of a key-value map in a bag: absS(σ) = {σ(k)|k ∈ σ. A similar construction is defined
for ledgers (absL). After proving a crucial lemma that connects the concrete and abstract
denotational semantics (left), we can finally prove the soundness theorem (right):

CJ l K(σ) = τ

AJ absL(l) K(absS(σ)) = absS(τ)

A{P} absL(l) {Q} l valid in σ
soundness

C{P ◦ absS} l {Q ◦ absS}
Conclusion The use of a proof assistant was instrumental in navigating various points in
the design space; we are now confident that our approach lays robust foundations at the ledger
level and is able to culminate into larger-scale verification of actual smart-contracts.

2

159



Program logics for ledgers O.Melkonian, W.Swierstra, J.Chapman

References
[1] Nicola Atzei, Massimo Bartoletti, Stefano Lande, and Roberto Zunino. A formal model of Bitcoin

transactions. In Sarah Meiklejohn and Kazue Sako, editors, Financial Cryptography and Data
Security - 22nd International Conference, FC 2018, Nieuwpoort, Curaçao, February 26 - March 2,
2018, Revised Selected Papers, volume 10957 of Lecture Notes in Computer Science, pages 541–560.
Springer, 2018.

[2] Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Michael Pey-
ton Jones, and Philip Wadler. The Extended UTXO model. In Matthew Bernhard, Andrea Brac-
ciali, L. Jean Camp, Shin’ichiro Matsuo, Alana Maurushat, Peter B. Rønne, and Massimiliano Sala,
editors, Financial Cryptography and Data Security - FC 2020 International Workshops, AsiaUSEC,
CoDeFi, VOTING, and WTSC, Kota Kinabalu, Malaysia, February 14, 2020, Revised Selected
Papers, volume 12063 of Lecture Notes in Computer Science, pages 525–539. Springer, 2020.

[3] Ulf Norell. Dependently typed programming in Agda. In International School on Advanced Func-
tional Programming, pages 230–266. Springer, 2008.

[4] John C. Reynolds. Separation Logic: A logic for shared mutable data structures. In 17th IEEE
Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark,
Proceedings, pages 55–74. IEEE Computer Society, 2002.

3

160



Formalization of Blockchain Oracles in Coq

Mohammad Shaheer1, Giselle Reis1, Bruno Woltzenlogel Paleo2, and Joachim
Zahnentferner2*

1 Carnegie Mellon University, Qatar – mshaheer@andrew.cmu.edu, giselle@cmu.edu
2 Djed Alliance – bruno.wp@gmail.com

Abstract

Oracles are crucial components that bring external data to smart contracts deployed
on blockchains. With the recent surge in popularity of decentralized finance (DeFi) ap-
plications, it is critical to provide assurances about the oracle implementations as these
applications deal with high-value transactions and a small price discrepancy can lead to
huge losses. Although there are many oracle implementations, there have not been many
efforts to formally verify their behavior. We present a simple oracle implementation in
Solidity and its formal model using the Coq interactive theorem prover. We also prove
interesting trace-level properties that give us formal guarantees about the oracle’s behavior
at a high level. Our work can be a stepping stone for future oracle implementations and
provide developers with a framework for formally verifying their implementations.

Smart contracts are programs that run on blockchains, maintain an internal state and pro-
vide functions whose execution may depend on the internal state and on calls to functions of
other smart contracts. Due to the decentralized operation of blockchains, applications built
through smart contracts may enjoy desirable qualities such as transparency, censorship resis-
tance and interoperability. The flexible programmability of smart contracts coupled with the
qualities of the blockchain environment formed a fertile ground for financial applications, where
such qualities are highly desirable and at times absent in the traditional financial sector [1].
This ushered an era of so-called Decentralized Finance (DeFi). Thousands of digital assets have
been implemented as ERC20 [2] smart contracts that maintain, as their internal states, the
balances of all users of an asset and provide functions for transferring amounts from one user
to another. Collateralized lending applications [3] have been developed to allow users to lend
and borrow such assets. Exchange applications [4] have been developed to allow users to swap
assets. And various stablecoin algorithms have been proposed to allow the price of a digital
asset to track the price of another asset.

Blockchain applications often need access to information that is not readily available on the
blockchain. For DeFi applications in particular, data from the external world can be crucial.
For example: a stablecoin needs to know the relative price of the fiat currency to which it is
pegged; a collateralized lending application needs to know the value of the collateral to know
when to liquidate debts. This need is satiated through a special type of blockchain application
known as oracle. An oracle has a smart contract that maintains the desired data in its internal
state and implements an oracle protocol that establishes the conditions under which various
entities may write or read data from the contract. Some of these entities are also responsible
for operating off-chain components of the oracle to obtain the data to be written to the contract.

Oracle protocols differ widely in how frequently the data is updated, how data consumers
are charged for reading the data, how data being written by multiple sources is aggregated,
how misbehaviour is penalized and desirable behaviour incentivized.

Unfortunately, existing oracle implementations are ad hoc, lacking a formal definition, or
even a precise description, of their protocol. Without a formal definition, it is harder to provide
guarantees for the oracle’s functioning. In the worst case, there might even be unidentified
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exploitable security vulnerabilities. This leads to uncertainty and compromises confidence on
the applications that depend on such oracle implementations.

Our work tackles this issue by: (1) proposing a (non-exhaustive) set of desirable properties
for oracle protocols; (2) formalizing a simple oracle protocol in Coq and formally proving that it
satisfies these desirable properties; (3) implementing an oracle smart contract in Solidity closely
following the formal oracle protocol.

Our work focuses on the long-term economic sustainability of the oracle. Since an oracle has
off-chain components that are costly to operate (e.g. to obtain data from an external source
and write it to the contract), the entities operating these components need to be economically
incentivized to keep doing their work. This is done by charging fees from the data consumers
who read data from the oracle. The oracle protocol automatically adjusts the fees for reading
data based on the costs of the data provider and the frequency of data reads, aiming to ensure
that: (A) the costs of the data provider are covered by the fee revenue from data reads; and (B)
every data consumer is paying a price that is fair in the sense that they never have to pay twice
for the same data point and the cost of data is distributed evenly between all data consumers.

Given the desired properties (A) and (B), we developed an oracle smart contract in Coq
in parallel with its Solidity implementation assuming a single external data provider. The
Coq formalization was designed such that properties could be proved fairly easily, but also
that it faithfully represents the Solidity implementation. Striking this balance is not always
straightforward. We went over a few different representations before establishing what follows.

Since Solidity is an object-oriented language, the formalization uses Coq’s Records to repre-
sent objects. The oracle contract itself is an object, which is implemented in Coq as a Record

called State. This record consists of two sub-records: OracleState and OracleParameters; and a
Trace list. OracleState contains contract attributes that change with time and OracleParameters

encompasses immutable attributes set at initialization. Trace is a list of Events that keeps a
record of the operations performed on the contract. Every time a contract function is called, its
corresponding Event is added to the Trace. Finally, in order to account for side effects, contract
functions implemented in Coq have explicit States in their input and output.

Our oracle protocol uses a subscription-based model where consumers deposit credit before
reading the data. The cost of a data read is taken from a consumer’s balance and it depends,
among other things, on a base fee, which can be adjusted but may not exceed a maximum fee.
These fees are part of the contract’s parameters and can be adjusted by the data provider.
Proper adjustments can, under certain assumptions, provably ensure that properties (A) and
(B) are fulfilled.

Using the oracle formalization in Coq, we could prove two main theorems:

Thm 1. For all consumers c, if credit(c) ≥ 0, then after any contract function call credit(c) ≥ 0.

Thm 2. Between two consecutive data writes, each consumer pays once to read the data.

Both properties are proved using induction on the Trace. The proof of Theorem 1 uses
two helper lemmas. The proof of Theorem 2 uses nine helper lemmas. Both proofs also use a
number of auxiliary definitions for manipulating states and traces.

The implementation and formalization can be found at, respectively, https://github.com/
DjedAlliance/Oracle-Solidity/tree/cmu-qatar and https://github.com/DjedAlliance/
Oracle-FormalMethods.

For future work, our next step is to shift our focus from economic aspects to governance
aspects around the whitelist of data providers, who can adjust the oracle’s parameters and vote
to add or remove data providers from the whitelist. We plan to prove theorems related to the
security of such governance processes under circumstances where some data providers may have
been compromised.
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Abstract
This paper defines a simple basic model of smart contracts in Agda. In the previous

work [1], we verified smart contracts in Bitcoin. The aim of this paper is the first step to-
wards transferring this work to the Solidity-style [8] smart contracts of Ethereum, namely,
to develop a model. This model is much more complex than that used for Bitcoin because
contracts in Ethereum are object-oriented. We build a simple model which supports sim-
ple execution, calling of other contracts and functions and which refers to addresses and
messages.

Smart contracts are one of the main applications of Blockchain. In Blockchain, smart
contracts are programs that automatically run when certain predetermined criteria are satis-
fied [9, 5]. The simplest example of a smart contract is used to buy and sell goods or services:
The purchaser deposits funds on the Blockchain for the seller. The funds are not released to the
seller until a second signature is obtained from the purchaser upon receipt of the items. If the
products are not delivered on time, the customer is refunded [7]. Simple smart contracts like the
above can be written in Bitcoin in Script [4]. The cryptocurrency Ethereum has a much more
powerful Turing complete machine language, the Ethereum Virtual Machine (EVM), which al-
lows calls to other contracts. There are two high-level languages which compile into the EVM,
Solidity and Vyper [2, 3]. Other cryptocurrencies have their own languages [2].

As smart contract failures can trigger huge financial losses, accuracy and security are com-
pulsory in smart contracts before deploying on the Blockchain network because once deployed,
the contract is immutable. [10]. Verification of smart contracts is costly, yet it is invaluable in
helping to limit the financial implications of poorly designed contracts. An example of poor de-
sign is evident from hacking the Distributed Autonomous Organization (DAO) smart contract
in 2016 [6, 7]. DAO is a contract issued on the cryptocurrency Ethereum and is an investor-
directed venture capital fund based on smart contracts. A flaw in the smart contract code of
DAO was exploited by cyber criminals when the fund’s market value reached US$ 150 million.

In this paper, we build as a first step towards the verification of smart contracts a model
of smart contracts in the theorem prover Agda. In the Ethereum virtual machine, one can
call functions using arguments which serialise the data passed on to them. In our model, we
abstract from this by defining a data type of messages. Messages are natural numbers, or lists
of messages. This allows to represent elements of data types as messages; for instance, an
array can be represented as a list of messages, and a map can be represented as a list of pairs
consisting of a key and the element it is mapped to (both represented as messages).

data Msg : Set where nat : (n : N) → Msg
list : (l : List Msg) → Msg

After that, we define smart contracts mutually recursively as a coinductive record Smart-
ContractExecStep, which allows conditionals, sequential compositions, and loops, together with
the data type SmartContractExec as follows:

record SmartContractExecStep : Set where
coinductive
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field calledAddress : Address
calledFunction : FunctionName
calledMsg : Msg
cont : Msg → SmartContractExec

data SmartContractExec : Set where
return : Msg → SmartContractExec
call : SmartContractExecStep → SmartContractExec
error : ErrorMsg → SmartContractExec

Our smart contracts execution step consists of the address to call (calledAddress), the func-
tion name to call (calledFunction), followed by the message call (calledMsg), and the continuation
(cont) which determines the next execution step depending on the message returned when the
call to the function has finished. SmartContractExec determines the three steps how to continue
in the execution: return, which will terminate execution and return its argument, call which will
make a call SmartContractExecStep, and then continue as defined by its continuation argument,
and error, which will return an error.

The Ledger is a function which depending on addresses, function names, and messages (which
are the arguments to the function) returns a SmartContractExecStep:

Ledger = Address → FunctionName → Msg → SmartContractExec

In order to compute the execution of a call to a smart contract, we define a smart contract
stack (ExecutionStack), each element of which determines depending on the result of the current
execution the next SmartContractExecStep:

ExecutionStack = List (Msg → SmartContractExec)

The state of executing consists of the execution stack and the current code to be executed:

record StateExecFun : Set where
constructor stateEF
field executionStack : ExecutionStack

nextstep : SmartContractExec

We define stepEF, the one step execution of a smart contract, and stepEFntimes, which
iterates it n times, corresponding to execution with a simple form of gas limit:

stepEF : Ledger → StateExecFun → StateExecFun
stepEFntimes : Ledger → StateExecFun → N → StateExecFun

As an example, we build a ledger which has at address 0 a function "f1" which calls
contract with address 1, function "g1", message (nat n) and will terminate with the result
returned. Furthermore it has at address 1 a function "g1" which just increments a natural
number argument by 1. For all other addresses, functions, and arguments, it is undefined:

testLedger : Ledger
testLedger 0 "f1" (nat n) = call (smartContractExecStep 1 "g1" (nat n) return)
testLedger 1 "g1" (nat n) = return (nat (suc n))
testLedger ow ow’ ow” = error (strErr " Error undefined")

To conclude, we have built a basic smart contract model that supports execution. In the
next step, we will add state, gas cost and amount of money. Furthermore, we will include more
complex operations, such as transactions, in our model and deal with interactive programs in
Agda. Moreover, we will verify smart contracts in our model by using the weakest preconditions,
extending the work in [1]. Weakest preconditions can be used to determine for a smart contract
the conditions required to carry out a certain transfer.
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Artjoms Šinkarovs1∗and Sven-Bodo Scholz2

1 Heriot-Watt University
a.sinkarovs@hw.ac.uk
2 Radboud University
svenbodo.scholz@ru.nl

Many array languages such as APL [6], J [10], Futhark [4], or SaC [9] cater for multi-
dimensional arrays as first class citizens. These languages have two main advantages. Firstly,
they give rise to concise specifications of numerical algorithms that use array combinators rather
than explicit indexing as often found in imperative languages such as Fortran or C. Secondly,
as arrays have a very regular structure, many computations on arrays can be automatically
parallelised, which leads to efficient executions on a range of parallel platforms [2, 3, 8, 5].

Rank polymorphism is the ability of functions to be applied to arrays of arbitrary ranks.
Rank polymorphism is important for two reasons. Firstly, it gives rise to more general array
combinators such as map, fold, take, transpose, etc. Secondly, the structure of the nesting can
be used to enforce non-trivial traversals through sub-arrays which is often the basis for advanced
parallel algorithms such as scan or blocked matrix multiply.

In this talk we present how rank-polymorphic arrays can be embedded within a dependently-
typed language. On the one hand, our embedding offers the generality of the specifications found
in array languages. On the other hand, we guarantee safe indexing and offer a way to reason
about concurrency patterns within the given algorithm.

We present the key ingredients of the array framework in Agda. We start with the definition
of an array theory.

record Array : Set1 where
field

S : Set
P : S → Set
ι : N → S
⊗ : S → S → S
ι-↔ : ∀ {n} → P (ι n) ↔ Fin n
⊗-↔ : ∀ {s p} → P (s ⊗ p) ↔ (P s × P p)
Ar : S → Set → Set
Ar-↔ : ∀ {s X} → (P s → X) ↔ Ar s X

Array shapes S are binary trees with natural numbers as leaves. Array indices P are indexed
by shapes, representing trees of natural numbers of the same shape as the index, but where all
leaves are component-wise smaller than the shape components. For example, for some shape
(ι a ⊗ (ι b ⊗ ι c)) the index is of the form (i, (j, k)) where i < a, j < b and k < c. Array
theory does not insist on a particular implementation of S and P but it requires the chosen
implementation to be isomorphic to such trees (ι-↔ and ⊗-↔). Finally, arrays (Ar) are indexed
by the shape and the element type, and we ask that arrays are representable functors (Ar-↔).

By expanding isomorphisms in the array theory, we get a number of useful array combinators
as model constructions. For some (A : Array), we have:

∗This work is supported by the Engineering and Physical Sciences Research Council through the grant
EP/N028201/1.
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imap : ∀ {s} → (P s → X) → Ar s X
[ ] : ∀ {s} → Ar s X → (P s → X)

nest : ∀ {s p} → Ar (s ⊗ p) X → Ar s (Ar p X)
unnest : ∀ {s p} → Ar s (Ar p X) → Ar (s ⊗ p) X

By noticing that for a fixed shape s Ar is an applicative functor [7], we obtain operations
like:

map : ∀ {s} → (X → Y) → Ar s X → Ar s Y
zipWith : ∀ {s} → (X → Y → Z) → Ar s X → Ar s Y → Ar s Z

Next, we define an inductive reshape relation that gives rise to reversible permutations of
array elements. There can be various reshaping relations allowing more or less liberal permu-
tations.

data Reshape : S → S → Set

The Reshape relation gives rise to actions on array indices and arrays themselves:

〈 〉 : ∀ {s p} → P p → Reshape s p → P s
reshape : ∀ {a b X} → Reshape a b → Ar a X → Ar b X

We finish this abstract by presenting the simplest example that demonstrates the power
of the proposed framework — a blocked matrix-vector multiplication. We work in the initial
model of our array theory, and we assume that we have two functions ( � : X → Y → Z) and
(sum : ∀ {s} → Ar s Z → Z). Then, a straight-forward matrix-vector multiplication is given by
mat-vec-canon. We define the blocked version mat-vec by running induction on s. When s is a
singleton we use the canonical multiplication defined earlier, but when s is a product (s ⊗ p),
we block the matrix into s matrices of p rows and apply mat-vec recursively on each block. All
these recursive applications can be executed in parallel, as there are no dependencies between
the parts.

mat-vec-canon : Ar (s ⊗ ι n) X → Ar (ι n) Y → Ar s Z
mat-vec-canon a v = imap λ i → sum $ imap λ k → a [ i ⊗ k ] � v [ k ]

mat-vec : Ar (s ⊗ ι n) X → Ar (ι n) Y → Ar s Z
mat-vec {s = ι m} a v = mat-vec-canon a v
mat-vec {s = s ⊗ p} a v = unnest $ map (flip mat-vec v) (nest $ tile a)

We can demonstrate that our blocked algorithm computes the same results (using point-wise
equality ≈a ); and that the blocked algorithm is stable under reshapes. That is, for all possible
reshapes, computing blocked mat-vec on a reshaped array is the same as computing mat-vec
on the original array and then performing the reshape.

mat-vec-ok : (a : Ar (s ⊗ ι n) X) → (v : Ar (ι n) Y) → mat-vec a v ≈a mat-vec-canon a v
mat-vec-stable : (r : Reshape s p) → (a : Ar (s ⊗ ι n) X) → (v : Ar (ι n) Y)

→ mat-vec (reshape (r ⊕ eq) a) v ≈a reshape r (mat-vec a v)

In practice this means, that we can use array reshaping as a vehicle to control which sub-arrays
will be executed in parallel. In the talk we will make this idea precise, explaining how exactly
one can reason about parallel execution.

We conclude with the observation that the presented array theory is very similar to categories
with families [1] which are often used to define type theories. In this analogy, contexts are
shapes, substitutions are reshapes, and well-scoped terms are arrays.

168



Rank-polymorphic arrays within dependent types A. Šinkarovs and S. Scholz
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In formal systems combining dependent types and inductive types, such as the Coq proof
assistant [8], non-terminating programs are frowned upon. They can indeed be made to return
impossible results, thus endangering the consistency of the system [7], although the transient
usage of a non-terminating Y combinator, typically for searching witnesses, is safe [4]. To avoid
this issue, the definition of a recursive function is allowed only if one of its arguments is of an
inductive type and any recursive call is performed on a syntactically smaller argument. If there
is no such argument, the user has to artificially add one, e.g., an accessibility property. Free
monads can still be used to address general recursion [6] and elegant methods make possible to
extract partial functions from sophisticated recursive schemes [2, 5]. The latter yet rely on an
inductive characterization of the domain of a function, and of its computational graph, which
in turn might require a substantial effort of specification and proof.

This leads to a rather frustrating situation when computations are involved. Indeed, the
user first has to formally prove that the function will terminate, then the computation can
be performed, and finally a result is obtained (assuming the user waited long enough). But
since the computation did terminate, what was the point of proving that it would terminate?
This abstract investigates how users of proof assistants based on variants of the Calculus of
Inductive Constructions could benefit from manifestly terminating computations. A companion
file showcasing the approach in the Coq proof assistant is available on-line [1].

Iteration. Traditional call-by-value programming languages allow a fix operator:

let rec fix f x = f (fix f) x

As this definition is typically forbidden in our setting, we resort to a more domain theoretic
approach, so as to enable reasoning about a term y such that fixF x terminates on y for a
certain x. Consider two types T and U and a function F : (T → U) → (T → U). Given an
integer n, a variable k : T → U , and an input x : T , the computation of Fn k x = (F ◦ . . .◦F ) k x
reduces to a value y of type U . If no occurrence of the variable k appears in y, then y is also
the result of Fm k x for any m ≥ n, which we denote F ∗ x⇝ y.

Since Coq can compute the normal form of Fn k x (i.e., Nat.iter n F k x) for some con-
crete n, the property ∀k, Fn k x = y holds by reflexivity. But this equality is only a means to
an end. The next step is to prove some properties about y so that it can be used inside some
other proof. For a predicate P : T → U → Prop that relates inputs and outputs, and from the
fact F ∗ x⇝ y, we can derive P x y by applying Lemma 1 (whose proof is actually trivial).

Lemma 1. If ∃f, ∀x, P x (f x) and ∀k, (∀x, P x (k x))⇒ ∀x, P x (F k x),
then ∀nx y, (∀k, Fn k x = y)⇒ P x y.

As an illustration, we define an efficient implementation of factorial over binary relative
integers (type Z in Coq) and, using Lemma 1, we easily prove that, when it terminates on a
non-negative input, it does indeed compute its factorial. We then use this to prove a definitional

∗This project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 101001995).
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identity whose type-checking would take astronomical time. Note that at no point do we need
to formally prove that factZ terminates over non-negative integers to use it. It just does.

Definition factZ k n := if Z.eqb n 0 then 1 else Z.mul n (k (n - 1)).

Lemma factZ_spec n x y : (forall k, Nat.iter n factZ k x = y) → (0 <= x) →
Z.of_nat ((Z.to_nat x)!) = y. (* n! defines the reference factorial, on type nat *)

Goal Z.of_nat ((Z.to_nat 15)!) = 1307674368000. Proof. exact: (factZ_spec 20). Qed.

Accessibility. The previous approach is effective, but it hinges on the fact that one can ex-
hibit a function f such that ∀x, P x (f x). (Above, we used fun x => Z.of_nat ((Z.to_nat x)!.)
The companion file illustrates how to compute the function McCarthy91 using its recursive def-
inition, but using the non-recursive equivalent definition as f .

In general, the function f is recursive, and thus one has to prove its termination, which might
in some cases be just as hard as proving the termination of F ∗ itself. Those cases thus require
a different approach. Consider the following Coq function, inspired from Charguéraud [3]. (See
the companion file for the exact but less readable term.)

Definition fixacc (dummy : U) F (R : T → T → bool) (x : T) : Acc R x → U :=

Acc_rect (fun x k ⇒ F (fun y ⇒ if R y x then k y else dummy) x).

In addition to the already known arguments F and x, this function takes a Boolean relationR
and a proof that x is accessible using this relation (i.e., no infinite decreasing chain from x).
This accessibility proof is used to fuel the recursive calls. If at some point on input u, F tries
to perform a recursive call with input v, the inner function will check that v is indeed smaller
(i.e., Rv u = true). If so, it allows the recursive call k v. Otherwise, it returns a dummy value
from U . Note that in practice U will be non-empty, for there is a y such that F ∗ x⇝ y.

The relation R represents the call graph of the computation F ∗ x ⇝ y. More precisely,
Rv u = false if and only if F was invoked on u but it did not perform a direct recursive call with
input v. In other words, the above function behaves the same as Acc_rect (fun u k => F k u),
which is just F ∗. As for the accessibility of x by R, it is a consequence of the fact that the
computation actually terminated and thus that the call graph is finite and acyclic. This gives
rise to the following consistent axiom, where fixrel F x y stands for F ∗ x⇝ y:

Parameter fixrel : forall {T U}, ((T → U) → T → U) → T → U → Prop.

Axiom fixrel_spec : forall {T U} F x y, fixrel F x y → exists R,

(forall v k1 k2, (forall u, R u v = true → k1 u = k2 u) → F k1 v = F k2 v) /\

exists W, forall u, y = fixacc u F R x W.

Using this axiom, it becomes possible to prove a lemma such as “fixrel factZ x y -> 0 < y”
without first exhibiting a terminating function or proving termination of factZ. Instead, proofs
go by unfolding fixacc, and by exhibiting two functions k1 and k2 that are equal for every
input v except when Rv u = false. This way, we construct an ad hoc proof for every sensible F ,
i.e., for functionals that do not perform any irrelevant recursive call (e.g., k x− k x).

Conclusion. Checking the antecedent (fixrel F x y) of the axiom fixrel_spec is easy to
do in the kernel of Coq, e.g., in the bytecode interpreter. This could obviously lead to non-
terminating computations when checking proofs, but from the user’s viewpoint, there is not
much difference between computations that cannot terminate and computations that take too
long to terminate.

At this point, the open questions are whether there exists a simpler version of this axiom,
and whether one can deduce from it a generic variant of Lemma 1.
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Software packages for exact real computation provide data types to work exactly with real
numbers. The AERN library [Kon21], a Haskell library for efficient exact real computation
developed and maintained by one of the authors, provides a type CReal for real numbers and
operations such as arithmetic and limits of fastly converging sequences. For an object of type
CReal, one can output rational approximations of arbitrary (absolute) precision. Comparisons
x < y of two real numbers return an object of type CKleenean. A CKleenean is interpreted
as an element of Kleene’s three valued logic over True, False and ⊥, where ⊥ stands for the
third truth value whose operational meaning is nontermination. In AERN, a CKleenean can
be evaluated with a certain effort which either returns a Boolean value or undefined.

The cAERN library [KPT22] is a formalization of exact real computation in the Coq proof
assistant. (The code can be found on https://github.com/holgerthies/coq-aern with parts
relevant for the current work contained in the new-subsets branch.) One of the main goals of
the library is to extract efficient verified Haskell programs built on top of the AERN framework.
To achieve this, we axiomatically define e.g. types R of real numbers and K of Kleeneans. We
further extend Coq’s program extraction to map those types and basic operations on them to
corresponding types and operations in AERN. In [KPT22], the soundness of our axiomatization
is shown by interpreting our results in a simplified type theory and extending a realizability
interpretation in the category of assemblies over Kleene’s second algebra.

In recent ongoing work, we extend cAERN to computations on higher objects such as spaces
of real functions and hyperspaces of real subsets. To this end, we first express subsets classically
as relations X → Prop and then assign computational content to such sets via topological
notions. Note that we assume classical axioms to hold in Prop.

The Sierpinski space is the two point space S := {⊤,⊥} where {⊤} is the only non-trivial
open. Sierpinski space is typically used in computability theory to characterize semi-decidable
propositions. In computable analysis, Sierpinski space is used to characterize subsets of rep-
resented spaces [Pau16]. For example, a set A ⊆ X is (computably) open if its characteristic
function χA : X → S is computable.

As Kleeneans K already exists in our system, instead of introducing Sierpinski space as
another primitive type, we define it as

S :≡ Σ(b : K). b ̸= false

and identify open subsets of a space X with functions X → S:

open A :≡ Σ(f : X → S). Π(x : X). f(x) = ⊤ ↔ x ∈ A .

Using basic properties of the Kleeneans, we get short and elegant proofs for simple properties
of open sets. However, from the point of view of doing actual computations, using Sierpinski
valued functions to represent basic objects is often far from optimal and programs extracted from

∗Holger Thies is supported by JSPS KAKENHI Grant Numbers 20K19744 and 23H0334. Sewon Park is a
JSPS International Research Fellow supported by JSPS KAKENHI (Grant-in-Aid for JSPS Fellows) 22F22071.
This project has received funding from the EU’s Horizon 2020 research and innovation programme under the
Marie Sk lodowska-Curie grant agreement No 731143.
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such proofs are rather inefficient. As we are interested in extracting exact real computation
programs, we focus on subsets of Euclidean spaces. For simplicity we present only the one
dimensional case here, but generalize that to arbitrary dimension in the implementation. We
can prove the following characterization for subsets A ⊆ R of the real numbers:

open A↔ Σ(F : N→ R× R)). (Π(n : N). B(F (n)) ⊆ A) ∧Π(x : R). ∃(n : N). x ∈ B(F (n)).

Here, B(x, r) encodes a ball with radius r around x. That is, a subset A ⊆ R is open if and
only if we can find a sequence of balls, all contained in A, that eventually cover all of A.

The proof uses the continuity of the function R → S, i.e., the fact that every computable
function is continuous. To this end, we need to include a continuity principle in our axiomatic
system saying that every function in our type theory is continuous. As the goal of the project is
to use axioms to model functionality that is typically available in exact real computation,instead
of assuming a continuity principle by saying that any functional (N→ N)→ N is continuous and
then reasoning on specific constructions of the types X and Y , decomposing them to the natural
numbers, we formalize continuity directly on our axiomatic types in terms of nondeterministic
existence of an interval extension. Such an operation is natural in exact real computation
software and our continuity principle can be extracted to a simple operation in AERN.

The interval extension can be used to derive a more standard form of the continuity principle:

Π(f : R→ S). Π(x : R). (f x) = ⊤ → MΣ(n : N). Π(y : N). |x− y| < 2−n → (f y) = ⊤

where M is a nondeterminism monad providing logical equivalence to the propositional trunca-
tion in the model (see [Xu15] for formulations of similar continuity principles using truncations).
Thus, the continuity principle states that for any Sierpinski-valued mapping f from the reals,
when f x is defined, there nondeterministically exists a natural number n such that f is defined
also for any real number y that is 2−n-close to x.

Other classes of sets we consider are compact and overt sets. A subset A ⊆ X is compact if

compact A : Σ(f : open X → S). Π(U : open X). f(U) = ⊤ ↔ A ⊆ U.

A subset A ⊆ X is overt if

overt A : Σ(f : open X → S). Π(U : open X). f(U) = ⊤ ↔ A ∩ U ̸= ∅.

Note that from a computational point of view, the compact subsets are those for which it can
be verified that a semidecidable property holds for each point, and the overt subsets are those
for which it can be verified that it holds for at least one point.

A class of sets that we are particularly interested in is those that are both compact and overt
which we call located subsets. We give another characterization of such sets corresponding to
arbitrarily exact drawings. We prove that such sets are closed under affine transformations and
under taking limits of fastly converging sequences w.r.t. the Hausdorff metric. As an application
we show how to extract programs for generating verified drawings of several types of fractals
and generate those drawings for the 2-dimensional case.
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Currently, cubical type theories are the only known systems which support computational
univalence. We can use computation in these systems to shortcut some proofs, by appealing to
definitional equality of sides of equations. However, efficiency issues in existing implementations
often preclude such computational proofs, or it takes a large amount of effort to find definitions
which are feasible to compute. In this abstract we investigate the efficiency of the ABCFHL
[ABC+21] Cartesian cubical type theory with separate homogeneous composition (hcom) and
coercion (coe), although most of our findings transfer to other systems.

Cubical normalization-by-evaluation

In variants of non-cubical Martin-Löf type theory, definitional equalities are specified by refer-
ence to a substitution operation on terms. However, well-known efficient implementations do
not actually use term substitution. Instead, normalization-by-evaluation (NbE) is used, which
corresponds to certain environment machines from a more operational point of view. In these
setups, there is a distinction between syntactic terms and semantic values. Terms are viewed
as immutable program code that supports evaluation into the semantic domain but no other
operations.

In contrast, in cubical type theories interval substitution is an essential component of compu-
tation which seemingly cannot be removed from the semantics. Most existing implementations
use NbE for ordinary non-cubical computation, but also include interval substitution as an op-
eration that acts on semantic values. Unfortunately, a naive combination of NbE and interval
substitution performs poorly, as it destroys the implicit sharing of work and structure which
underlies the efficiency of NbE in the first place. We propose a restructured cubical NbE which
handles interval substitution more gracefully. The basic operations are the following.

1. Evaluation maps from syntax to semantics like before, but it additionally takes as input
an interval environment and a cofibration.

2. Interval substitution acts on values, but it has trivial cost by itself; it only shallowly stores
an explicit substitution.

3. Forcing computes a value to weak head form by sufficiently computing previously stored
delayed substitutions.

On canonical values, forcing simply pushes substitutions further down, incurring minimal
cost. But on neutral values, since neutrals are not stable under substitution, forcing has to
potentially perform arbitrary computation. Here we take a hint from the formal cubical NbE
by Sterling and Angiuli [SA21], by annotating neutral values with stability information. This
allows us to quickly determine whether a neutral value is stable under a given substitution.
When it is stable, forcing does not have to look inside it.

It turns out that there is only a single computation rule in the ABCFHL theory which can
trigger interval substitution with significant cost: the coercion rule for the Glue type former.
In every other case, only a weakening substitution may be created, but all neutral values are
stable under weakening, so forcing by weakening always has a trivial cost.
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Using canonicity in closed evaluation

In non-cubical type theories, evaluation of closed terms can be more efficient than that of open
terms. For instance, when we evaluate an if−then−else expression, we know that exactly one
branch will be taken. In open evaluation, the Bool scrutinee may be neutral, in which case both
branches may have to be evaluated.

In the cubical setting, systems of partial values can be viewed as branching structures
which make case distinctions on cofibrations. Importantly, there are computation rules which
scrutinize all components of a cubical system. These are precisely the homogeneous composition
rules (hcom) for strict inductive types. For example:

hcomr→r′

N [ψ 7→ i. suc t] (suc b) = suc (hcomr→r′

N [ψ 7→ i. t] b)

When we only have interval variables and a cofibration in the context, we do not have to
compute every system component to check for suc. In this case, which we may call “closed
cubical”, we can use the canonicity property of the theory. Here suc b in the hcom base implies
that every system component is headed by suc as well. Hence, we can use the following rule
instead:

hcomr→r′

N [ψ 7→ i. t] (suc b) = suc (hcomr→r′

N [ψ 7→ i. pred t] b)

Here, pred is a metatheoretic function which takes the predecessor of a value which is already
known to be definitionally suc. The revised rule assumes nothing about the shape of t on
the left hand side, so we can compute pred lazily in the output. These lazy projections work
analogously for all non-higher inductive types. For higher-inductive types, hcom is a canonical
value, so there is no efficiency issue to begin with.

Huber [Hub16, Section 7.2] used a similar definition, but where pred is an internal definition.
For general inductive types, we need metatheoretical lazy field projections; for instance, taking
the head of a list is not a total internal function, and we need to use the external knowledge
that a list is nonempty.

Summary

• Costly interval substitution can only arise from computing with Glue types.

• In closed cubical evaluation, no computation rule forces all components of a system.

We have implemented a system with these properties, and observed large performance improve-
ments over existing systems. We were also able to compute a variant of a Brunerie number
definition which is not computable in Cubical Agda. However, many more benchmarks are yet
to be adapted, including the original Brunerie number definition.
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Abstract

We recover a classical model of dependent type theory and revisit it to describe a
version of coercive subtyping, which we provide rules, coherences, and examples of.

1 Introduction

Most categorical models of dependent types have traditionally been heavily set-based: this is
the case for categories with families [6], categories with attributes [2, 11], and natural models
[1]. In particular, all of them can be traced back to certain discrete fibrations. We extend this
intuition to the case of a general, non necessarily discrete, fibration, and use the newly found
structure on the fibers to interpret a form of subtyping closely related to coercive subtyping [9].

2 Fibrational Model

A natural model is the data of a pair of discrete fibrations u, u̇ and a functor Σ such that
u ◦Σ = u̇ and Σ has a right adjoint ∆. In [1, Proposition 1.2] it is shown that this structure is
equivalent to the perhaps more widely known notion of category with families (CwF).

U̇ U

Cu̇ u

Σ

∆

⊣

Intuitively, the category C represents contexts and substitutions, the category U types, the
category U̇ terms. Both types and terms are fibered over contexts and, on a given context, u, u̇
provide, respectively, a set of types or terms. The functor Σ maps each term to its given type,
and ∆ picks for each type the generic term in that type in the context obtained by extending
its context with itself.

We prove that one can suitably extend the structure above to the case where u, u̇ are general
Grothendieck fibrations – and that the result is equivalent to yet another model appearing in
[8], namely comprehension categories.

Definition 2.0.1 (Generalized CwF). A generalized CwF is the data of a pair of fibrations u, u̇,
a fibration morphism Σ, and a right adjoint ∆ to Σ such that unit and counit have cartesian
components.

∗This research has been partially funded by the Project PRIN2020 ”BRIO - Bias, Risk and Opacity in AI”
(2020SSKZ7R) and by by the Department of Philosophy “Piero Martinetti” of the University of Milan under
the Project “Departments of Excellence 2023-2027”, both awarded by the Ministry of University and Research
(MUR).
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Generalized CwFs appear with the name of judgemental dependent type theories in [4, 5].

Theorem 2.0.2 ([5]). The 2-category of generalized CwFs is equivalent to the 2-category of
comprehension categories.

Now the fiber over a given context is not a set, but a category, so that we have all the
necessary structure to interpret subtyping.

3 Coercive Subtyping

As we have mentioned, our intuition closely follows that of coercive subtyping : this is the
product of thinking about subtyping as an abbreviation mechanism, meaning that we say that
a given type A′ is a subtype of A if there is a unique coercion from A′ to A. Whenever we need
a term of type A, then, it suffices to have a term of type A′, which we can “plug-in” into A.
Coercive subtyping has many computational properties, and throughout the years it has been
made to behave very well with other common structures in dependent type theory [3, 10].

Intuitively, we interpret vertical arrows – meaning arrows in U , U̇ over identities in C – to
coercions: between two given types A,A′ there is at most a coercion (up to vertical isomor-
phism), so that they suitably model abbreviation. In particular, with faithful fibrations, this
is precisely unique, and our rules swiftly match the coherence conditions required of coercive
subtyping [10, §2.2].

The technical tool we use is that of comma object, and we consider what implications it
brings to compute it in either the 2-category of functors into C, namely Cat/C , or in the
2-category of fibrations (in the sense of Grothendieck-Bénabou, [12]) with basis C, denoted
Fib(C). We recover a form of subtyping in the context of these generalized CwFs and describe
the corresponding rules.

We are able to interpret judgements of the form

Γ ⊢ a :f A and Γ ⊢ A′ ≤g A,

which we can read as, respectively, “as witnessed by f , a is a term of type A in context Γ” and
“as witnessed by g, A′ is a sub-type of A in context Γ”, and are encoded in, respectively,

(Σ/Id) and (Id/Id),

and prove that our model satisfies rules such as the following subsumption.

Γ ⊢ a : A′ Γ ⊢ A′ ≤f A
(Sbsm)

Γ ⊢ a : A

We conclude providing a few examples and, in particular, detail what happens in the case
that the type fibration u is obtained from the codomain fibration cod : Set2 → Set: this turns
out to be a closely related to semantic subtyping as in [7].
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1 Context

Most programmers and computer scientists will be familiar with simple type systems that
ensure that the code they write is type safe in the context of the language they are writing it
in. However, much more sophisticated type systems exist that can be used to ensure specific
properties of a program, such as resource usage (Linear Types [5]), value predicates (Liquid
Types [6]), or correct following of a distributed protocol (Session Types [4]).

Some of these type systems can be dependent or independent from each other. Both Liquid
Types and Session Types require a base type system with primitive types (such as int, bool)
to exist, but they can be orthogonal to each other, as you can have a Liquid Type whose base
type is int, and a Session Type that also relies on the base value being int, ignore the liquid
predicate.

Given this plethora of type systems, different applications require a different subset of type
systems. Not all applications require these advanced type systems (e.g., fully dependent types),
trading off static guarantees for (even if short-term) productivity. Untyped languages have
been popular in both web applications, scripting and data science. On the other hand, if you
are writing a device driver, you will probably want to take advantage of a type system that
guarantees that memory usage is constrained to a given bound [3]. Or if you are writing a
complex, distributed protocol, you might want to take advantage of Session Types for that part
of the program.

In this talk, we try to address the challenge of how multiple type systems can co-exist
in the same programming language, allowing different, valid combinations to be used in the
type-checking of a program.

To illustrate this in a small example, consider the program in Listing 1 that reads the
text contents of a file and prints it to the console line-by-line. In this short snippet, there
are multiple concerns to be addressed. Firstly, one wants to ensure that all function calls are
performed with variables of the appropriate data types. Secondly, to avoid errors due to an out
of bound access, get should only be called with an index that does not exceed the list length.
Lastly, when working with resources such as a file descriptor it might be useful to track its state
and ensure that it is in a proper (closed) state at the end of program execution. Note that the
same standard library functions (createFD, readLines, etc...) may be needed in other programs
with different type systems requirements.

These properties can be verified in two major ways.

All features from all type systems can be combined in single, monolithic type system, con-
taining all the complexity that all the different type systems entail. A very similar issue can
also be observed when operating on Liquid Types: In certain cases we want to define predi-
cates on orthogonal properties that could be verified independently from one another; However,
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current implementation of liquid types do not allow such distinction, leading to confusing and
unintelligible error messages [2].

Listing 1: Simple example code

1 printLines lines idx len {

2 if len != idx then {

3 line = get(lines, idx)

4 print(line)

5 printLines(lines, idx+1, len)

6 }

7 }

8

9 filename = "input.txt"

10 fileDescriptor = createFD(filename)

11

12 open(fileDescriptor)

13

14 lines = readLines(fileDescriptor)

15 len = length(lines)

16 printLines(lines, 0, len)

17

18 close(fileDescriptor)

Listing 2: Annotations for LayeredTypes

1 -- State Layer definitions

2 createFD :: state :: {} -> { Closed }

3 openFile :: state :: {Closed => Open} -> {}

4 readLines :: state :: {Open => Consumed} -> {}

5 closeFile :: state :: {Consumed => Closed} -> {}

6

7 -- Type layer definitions

8 get :: types :: List -> int -> string

9 length :: types :: List -> int

10 createFD :: types :: string -> FileHandle

11 open :: types :: FileHandle -> void

12 readLines :: types :: FileHandle -> List

13 close :: types :: FileHandle -> void

14 print :: types :: string -> void

15 printLines :: types :: List -> int -> int -> void

16

17 -- Liquid layer definitions

18 length :: {List | true} -> {v:int | v>=0}

19 printLines :: liquid :: { List | true } -> { l:int | l

>=0 } -> { i:int | i<=l }

20 get :: liquid :: { List | true } -> { i:int | i<len }

21

22 -- State requirement at the end of the program

23 fileDescriptor :: state :: {Closed}

2 Proposed Approach

We propose a second, more principled alternative: LayeredTypes. In LayeredTypes[1],
developers can write programs, but can also define additional type systems as layers. Each
layer defines the basic types, and how typechecking happens. Additionally, a layer may depend
on another layer if it requires information (such as types or typing contexts) from another layer.

Type checking of programs can be partial in the sense that a program may only use some
layers (even if the libraries used are defined in more layers), requiring only that each function
contains type information for that layer and all dependencies. The missing layers can be added
over time, if they are found to be relevant.

We want to note an important distinction to Gradual Typing [8, 7]: Gradual Typing allows
to only provide partial typing information in one system, but does not allow to choose different
sets of types to verify. It allows to blend between having no types (0) and having types (1).
Our proposal supports multiple type systems, with different combinations among them.

We evaluated our approach in a prototype language. Users can provide their own imple-
mentations for verification layers and define dependencies between them. In Listing 2 we see a
set of annotations that can be added to the base code of Listing 1 to tackle the issues described.
We define three separate layers state, types and liquid. Internally, the framework will build
a dependency graph thus allowing to verify properties independently from one another where
appropriate.

We believe that this layered, incremental approach can help build more powerful and inde-
pendent type systems while at the same time making it simpler to understand the errors that
might arise during verification.

2
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We have recently given a completely intrinsic presentation of simply typed combinator cal-
culus with extensionality equations and shown the equivalence with simply typed λ-calculus.
[2]. The next step is clear: we need to do the same thing for dependent types. We will present
below the main ideas of the construction using a shallow embedding in Agda.

In simply typed combinator calculus we have:

K : {A B : Set} → A → B → A
K a b = a
S : {A B C : Set} → (A → B → C) → (A → B) → A → C
S f g a = f a (g a)

Identity I = S K K is derivable and using the well known abstraction algorithm [4] we can
encode all simply typed λ-terms. It is straightforward to come up with dependently typed
versions of the combinators:

K : {A : Set} {B : A → Set} → (a : A) → B a → A
S : {A : Set} {B : A → Set} {C : (a : A) → B a → Set}
→ ((a : A) (b : B a) → C a b)
→ (g : (a : A) → (B a))
→ (a : A) → C a (g a)

Clearly, the non-dependent version arise by instantiating the dependent types with constant
families. However, there is a problem when deriving abstraction. E.g. usually we would say

λ x → K = K K

However, this is no longer correct, because the variable x may occur in the (hidden) types A,B.
As a consequence we need to make the type parameters of K and S explicit by reflecting them
into terms using a universe:

U : Set
El : U → Set
u : U
Π : (A : U) (B : El A → U) → U

with the equations El u = U and El (Π A B) ≡ ((a : El A) → El (B a)).

∗This work is supported by the Engineering and Physical Sciences Research Council through the grant
EP/N028201/1.
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For simplicity we use an inconsistent calculus with Type : Type but this could be easily
stratified by using universe levels.

We can now redefine the combinators by making the type arguments explicit using the
universe:

K : {A : U} (B : El A → U) → (a : El A) → El (B a) → El A
S : {A : U} (B : El A → U) (C : (a : El A) → El (B a) → U)

→ ((a : El A) (b : El (B a)) → El (C a b))
→ (g : (a : El A) → El (B a))
→ (a : El A) → El (C a (g a))

Now the dependency of the types is a usual term dependency and we can proceed defining
bracket abstraction, e.g.

λ (x : C) → K = K K-Type (K C) K

where K-Type is the term in the universe corresponding to the type of K which can be derived
using the combinators (which now include u and Π). However, there is at least one point
where we have to appeal to Baron Münchhausen [1]. How do we derive non-dependent K from
dependent K? We would like to say:

K’ : {A B : U} → El A → El B → El A
K’ {A} B = K A (K’ u B)

But here we are using K’ in the definition of K’?! It turns out that we can get ourselves out of
the swamp by using I as a primitive combinator:

I : {A : U} → El A → El A
K’ {A} {B} = K (K (K (K (I {u}) u) A) B)

Using K’ we can derive a non-dependent version of S as well. However, we are still using
λ-calculus for polymorphism which eventually needs to be eliinated too.

Summary
The idea is that we start with a type theory with Π-types (without lambda abstraction) and
a universe and we are going to develop a dependent combinator calculus in the universe. The
main insight is that apart from the dependent version of S and K we now also need u and Π.

We have only started on this work. We need to show that the abstraction algorithm works
in general and has all the desired properties. Also we need to give a more semantic argument
why the non-dependent version of K can be derived from the dependent one. In the formal
version of this construction, we plan to use the initial categories with families [3] with extra
structure as our syntax.

We would like to adopt the extensionality axioms to the dependent case. Furthermore
the question is whether we can by further application of Münchausian reasoning completely
eliminate the outer level and avoid variables altogether as in the non-dependent calculus.
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1 Introduction
The construction of semi-simplicial types in type theory as dependent families of types [8] turned
out to be remarkably difficult in spite of considerable scrutiny over the past decade (see [7] for
an overview). In a proof-relevant setting, the seemingly innocent semi-simplicial identity would
be witnessed by a family of terms αi,j : didj =Xn→Xn−2 dj−1di (for any 0 ≤ i < j ≤ n) which
may combine together and create new proof terms.

Xn−2 Xn−3

Xn−1 Xn−2

Xn−1 Xn−2

Xn Xn−1

dk−2

dj−1

dj−1di
dk−1

dk−1
di

di

dk

di
dj

dj

Cube of proofs. Let us illustrate this with the
figure opposite. Each face of the cube is associated
with a proof term α. There are exactly two ways to
deform the lower “meridian” didjdk of the cube into
the upper one dk−2dj−1di relative to Xn, Xn−3, either
by passing through the backmost faces or through
the frontmost ones—both “hemispheres” of the cube.
Now, these two ways correspond exactly to the two
proofs of the equality didjdk =Xn→Xn−3 dk−2dj−1di,
given by the compositions π := αj,k ∗ αi,k−1 ∗ αi,j and
π′ := αi,j ∗ αi,k ∗ αj−1,k−1 (up to whiskering). For
the equality to be coherent at this stage would require
to “fill the cube”, i.e. exhibit a term βi,j,k : π = π′ witnessing the fact that both proofs are
indeed equal. Of course the β’s would, in turn, fit onto the “3-hemispheres” of a 4-cube and
require a term e.g. γi,j,k,ℓ to identify their possible compositions—then the process repeats with
5-cubes, 6-cubes, and so on ad infinitum.

Related work. One solution to handle these infinite towers of coherence consists in adding
some form of strictness to equality. The first co-author considered, for example, the case
of dependent families of sets (i.e. 0-truncated types)—see [4], or [5] for a joint work with
Ramachandra. Altenkirch, Capriotti and Kraus, on the other hand, extended HoTT with
a second equality type which is strict [2]. A whole different approach recently presented at
HoTTEST by Kolomatskaia extends type theory with a construction to inhabit dependent
streams of types [6].

∗The authors would like to thank Pierre-Louis Curien as well for his contributions. This abstract has also
been submitted to the HoTT/UF 2023 Workshop in Vienna, Austria.
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Our approach. We adopt the “n-cubes of proofs” point of view as above. Proof terms fit
inside of an infinite collection of n-cubes, and how they may combine together is a consequence
of the combinatorial structure of n-cubes. Roughly speaking, an n-cube would be the data
of a term cn : h+n,n−1 =... h

−
n,n−1 identifying both of its (n − 1)-hemispheres, which are given

by composing the (n− 1)-faces together in some way. The terms h+n,n−1, h
−
n,n−1 are proofs of

equality themselves, identifying both of the (n − 2)-hemispheres h+n,n−2, h
−
n,n−2. The general

picture would be a tower of equalities:

cn : h+n,n−1 =(
h+
n,n−2=(h+

n,n−3
=...h

−
n,n−3)

h−
n,n−2

) h−n,n−1

We suspect that examining the exact combinatorial structure1 of n-cubes and their k-hemispheres
will bring us one step closer to understanding all the higher coherence equations necessary
to fully construct semi-simplicial types without the need of univalence, i.e. internal to MLTT
extended with a notion of “infinite streams of data”.

2 Hemispheres of the n-Cube
Given some way to encode the faces of an n-cube, a k-hemisphere (relative to the n-cube) is a
specific collection of k-faces that “fit nicely together”. A first step thus consists in determining
what these k-faces might be.

Definition. We denote by (Dn
k ,≤) the poset of increasing sequences x1 . . . xn of length n with

values 0 ≤ xi ≤ k. The order on Dn
k is defined pointwise, i.e. x ≤ y ⇐⇒ ∀ i, xi ≤ yi.

The Dn
k ’s are connected by two notable order-preserving maps: there is a canonical inclusion

of Dn
k into Dn

k+1 which we will write d∗, as well as a map R : Dn
k → Dn+1

k which adds the
value k at the end of a sequence. Moreover, we have the following inductive description:

Lemma. Dn
k = d∗Dn

k−1 ⨿RDn−1
k

Our main result so far is the following:

Theorem. The k-hemispheres of the n-cube are exactly described by Dk
n−k. Moreover, all the

possible ways to compose the k-faces are given by all the topological sorts on Dk
n−k.

We have a working algorithm that generates all the k-faces of both k-hemispheres. It is
additionally possible to choose a total order on Dk

n−k which is compatible with ≤ and gives a
canonical choice of topological sort. Several questions that are open:

1. Compute the appropriate whiskering required for composition of k-faces to make sense in
type theory.

2. How to deal with the possible choices of composition? Can we show them to be equivalent
without the need of new proof terms (e.g. the Eckmann-Hilton argument)?

3. Using the new insights brought by the “n-cubes of proofs” point of view, is it now possible
to construct semi-simplicial types in a proof assistant?

We are hopefully close to giving a simple procedure that addresses the first question. This is
an ongoing work which may be subject to new developments by the end of June.

1Discussions with Métayer revealed that some of this combinatorial structure have already been spelled out
over the study of orientals (e.g. the work of Aitchison [1]). See [9] for the original article on orientals, and [3] for
a recent work of Ara, Lafont and Métayer.
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Abstract

We combine the theory of inductive data types with the theory of universal measurings.
By doing so, we find that many categories of algebras of endofunctors are actually enriched
in the corresponding category of coalgebras of the same endofunctor. The enrichment
captures all possible partial algebra homomorphisms, defined by measuring coalgebras.
Thus this enriched category carries more information than the usual category of algebras
which captures only total algebra homomorphisms. We specify new algebras besides the
initial one using a generalization of the notion of initial algebra.

1 Introduction

In both the tradition of functional programming and categorical logic, one takes the perspective
that most data types should be obtained as initial algebras of certain endofunctors (to use
categorical language). For instance, the natural numbers are obtained as the initial algebra of
the endofunctor X 7→ X + 1, assuming that the category in question (often the category of
sets) has a terminal object 1 and a coproduct +. Much theory has been developed around this
approach, which might be said to culminate in the notion of W-types [2].

In another tradition, that of categorical algebra, algebras (in the traditional sense) over a
field k are studied. It has been long understood (going back at least to Wraith and Sweedler,
according to [1]) that the category of k-algebras is naturally enriched over the category of
k-coalgebras, a fact which has admitted generalization to several other settings (e.g. [1, 3]).
Here, we generalize those classic results to the setting of an endofunctor on a category, and in
particular those endofunctors that are considered in the theory of W-types.

That is to say, this work is the beginning of a development of an analogue of the theory of
W-types – not based on the notion of initial objects in a category of algebras, but rather on
a generalized notion of initial object in a coalgebra enriched category of algebras. The hom-
coalgebras of our enriched category carry more information than the hom-sets in the unenriched
category that is usually considered in the theory of W-types. We are then able to generalize
the notion of initial algebra, taking inspiration from the theory of weighted limits, which is
more expressive, and thus can be used to specify more objects than the usual notion of initial
algebra. Because of our move to the enriched setting, then, we have better control than in
the unenriched setting, and we are able to specify more data types than just those which are
captured by the theory of W-types.

2 Main results

Our main theorem is the following.

Theorem. Let (C,⊗, I,C(−,−)) be a locally presentable symmetric monoidal closed category.
Let F : C → C be an accessible lax symmetric monoidal endofunctor. Then the category AlgF
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of F -algebras is enriched, tensored, and powered over the symmetric monoidal category CoAlgF
of F -coalgebras.

We show that many endofunctors of interest in the theory of W-types satisfy these hypothe-
ses. For instance, Set is a locally presentable symmetric monoidal closed category. The following
functors on a locally presentable symmetric monoidal closed category satisfy the hypotheses:
the identity functor, any constant functor at a commutative monoid, the coproduct of two
functors that satisfy the hypothesis, and the product two functors that satisfy the hypotheses.

In particular, the functor X 7→ X + 1 on Set satisfies the hypotheses, and we work out very
explicitly what the enrichment (and tensoring and cotensoring) tells in this situation. In this
concrete case, we see that the enrichment encodes a notion of partial algebra homomorphism,
whereas the usual category of algebras encodes the notion of total algebra homomorphism.

We then observe that there is an implicit parameter in the notion of initial algebra which
we may now vary. One might think of an initial object as a certain colimit, but in reality, an
initial object in a category C is usually (equivalently) defined as an object I with the property
that hom(I,X) = {∗} for every X ∈ C. That is, I is the vertex of a cone over the identity
functor on C with the special property that each leg of the cone (at an object X ∈ C) is the
only morphism of hom(I,X). The reader might know that as such, an initial object can always
be defined as the limit of the identity functor on C. Now that we are in the enriched setting,
however, the appropriate notion of limit becomes that of weighted limit in which we are able
ask not just that hom(I,X) = {∗} but that hom(I,X) = W for any object W . Thus, we make
the following definition.

Definition. Consider a monoidal category (C,⊗, I,C(−,−)) and endofunctor F : C→ C satis-
fying the hypotheses of the above theorem.

For W ∈ CoAlgF , we define the W -initial algebra to be the limit of the identity functor on
AlgF (viewed as the enriched categories described in the above theorem) weighted by the constant
functor AlgF → CoAlgF at W .

Taking W to be the terminal coalgebra, we recover the notion of initial algebras. But
taking alternate W , we can specify many more initial algebras. For instance, considering the
endofunctor X 7→ X + 1, we can specify quotients of N by weighting by subcoalgebras of N∞,
the terminal coalgebra.
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Languages like Coq and Agda forbid users to define non-strictly-positive data types [AAG05].
Indeed, one could otherwise very easily define non-terminating programs. However, this strict-
positivity criterion is nothing more than a syntactic restriction, which prevents sometimes
perfectly reasonable and innocuous data types to be defined. We present ongoing work on
making positivity checking more modular in Agda, by allowing polarity annotations in function
types and making it possible to enforce the variance of functions simply by type checking.

mixed

- +

++

unused

The polarity modal system. We introduce a new modal system
[GKNB21] aptly called the polarity [AM04, Abe06] modal system. It con-
sists of a partially-ordered set made out of five polarities: unused, -, +,
++ and mixed. These elements correspond to the permitted uses of bound
variables. The polarities are given the partial order shown on the right,
to be read from bottom to top (e.g. + ≤ ++) as going from less restrictive
to more restrictive: a variable bound with the mixed polarity is allowed
to appear anywhere; a variable bound with polarity ++ can only appear to
the right of arrows; variables bound with polarity - (resp. +) can appear
to the left of an odd (resp. even) number of arrows; and a variable bound
with the unused polarity can only be used to define constant functions
(much like irrelevance). This modal system is given a composition operation ◦ whose table we
write below: ◦ mixed + ++ - unused

mixed mixed mixed mixed mixed unused

+ mixed + + - unused

++ mixed + ++ - unused

- mixed - - + unused

unused unused unused unused unused unused

a ◦ b is to be understood as the most restrictive polarity a variable can be bound with, such
that it can be used with polarity a in a term that is itself used with polarity b. unused is
the absorbing element and ++ is the neutral element of this operation. It gives rise to a (left)
division operation \, defined such that µ ≤ δ ◦ ν ⇐⇒ δ \µ ≤ ν for any δ, µ, ν. The operations
◦ and \ form a Galois connection.

Typing rules. After attributing a polarity to every variable in context and function domains
(@r x : A), and extending the left-division operation to contexts (r\Γ) variablewise, we introduce
the typing rules of the polarity modal system. We implicitly use Russel-style universes. Note
that the context of the premise of t-El is left divided by unused, which is equivalent to changing
all the annotations in the context to mixed: informally, variable use in type judgements does
not matter.

unused\Γ ` A : Set
t-El

Γ ` A type

Γ ctx Γ ` A type
ctx-Ext

Γ, @r x : A ctx

@r x : A ∈ Γ r ≤ ++
t-Var

Γ ` x : A
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Modal function types (t-Pi) use their domain negatively1. Note that left-dividing by - corre-
sponds to inverting the annotation’s polarity, except for ++ which becomes unused. Regardless
of the annotation @r on the variable x, x is bound in the codomain as mixed (the weakest
modality). This is in line with t-El: since usage at the type level does not count, we do not
constrain it.

-\Γ ` A : Set Γ, @mixed x : A ` B : Set
t-Pi

Γ ` (@r x : A)→ B : Set

Γ, @r x : A ` t : B
t-Lam

Γ ` λx.t : (@r x : A)→ B

Γ ` u : (@r x : A)→ B r\Γ ` v : A
t-App

Γ ` u v : B[v/x]

And the monad was free, the (fix)point taken. We implemented the new modal system
and the typing rules presented above in Agda2. Since other modal systems were readily available
— erasure [Dan19, ADV21], irrelevance3, cohesion [LOPS18] — a lot of the infrastructure was in
place. Still, our work highlighted some deficiencies in the current implementation of modalities
[NPE+23]. Using our modified version of Agda, the following annotations are valid and taken
into account by the type checker.

F : @++ Set → Set

F X = Nat → X

G : @- Set → Set

G X = X → Nat

H : @+ Set → Set

H X = (X → Nat) → Nat

Above, only F is strictly positive and can be annotated as such without the type checker
getting in the way. We extended Agda’s positivity checker so that it also uses the polarity
of functions during the analysis, allowing the definitions of both the well-known free monad
construction Free and the least fixed point Mu of any strictly positive functor. Note that F and
A could themselves be annotated ++, we refer to the pull request for more elaborate examples.

data Free (F : @++ Set → Set)

(A : Set) : Set where

Pure : A → Free F A

Free : F (Free F A) → Free F A

data Mu (F : @++ Set → Set) : Set where

In : F (Mu F) → Mu F

Next steps. This work is ongoing and much is left to be done. On the semantics side of
things, a model for the polarity modalities is still eluding us, especially for the ++ polarity,
and it will most likely require looking deeper at directed type theory. The usefulness of our
annotations is hindered by the lack of subtyping in Agda, preventing one to use functions of
type @++ Set → Set wherever Set → Set is expected. Even if manual eta-expansion appeases
the type checker, a user of our annotation system has to redefine all the usual constructions
from scratch. A further complication is the fact that polarity and subtyping can interact in
a non-trivial way [Abe06]. Another question left to be answered is whether it is safe to add
the primitive fmap : (F : @+ Set → Set) (f : A → B) → F A → F B to Agda such that it
knows fmap is terminating and always reduces as expected. While relaxing the strict-positivity
criterion to simply positive data types has been shown to be inconsistent in presence of an
impredicative sort [CP88], one can wonder whether it would be safe in Agda [BMS18]. We also
want to investigate whether our polarity system could replace Agda’s positivity checker entirely,
greatly simplifying the implementation and perhaps even improving type checking performance.

1As remarked by Nuyts [Nuy15, eqs. (2.43, 2.58 modulo typo)], more care is needed if one wants to take
higher categorical structure into account.

2https://github.com/agda/agda/pull/6385
3The Agda implementation does not seem to follow any specific literature for irrelevance.
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A common litmus test for a language’s capability for modularity is whether the programmer is
able to both extend existing data with new ways to construct it and add new functionality for
this data. All in a way that preserves static type safety; a conundrum which Wadler [14] dubbed
the expression problem. In the context of pure functional programming further modularity
concerns arise from the need to model a program’s side effects explicitly using monads [8],
whose syntax and implementation we would ideally define separately and in a modular fashion.

Traditionally, these modularity questions are tackled in functional languages by embedding
the initial algebra semantics [4] of inductive data types. This approach was popularized by
Swierstra’s Data Types à la Carte [11] as a solution to the expression problem, and was later
applied to modularize the syntax and semantics of both first-order and higher-order effectful
computations [7, 15, 10, 12] through various kinds of inductively defined free monads. The
key idea that unifies these approaches is the use of signature functors that act as a syntactic
representation of inductive data types or inductively defined free monads, from which we recover
the desired structure using a type-level fixpoint. This separation of syntax and recursion permits
the composition of data types and effect trees by means of a general co-product of signature
functors, an operation that is not available for native data types. However, while embedding
signature functors is a tremendously useful technique for enhancing functional languages with
a higher degree of (type-safe) modularity, there are still some downsides to the approach.
Problem statement. Since we are working with an embedding of the semantics of data
types, we introduce an additional layer of indirection that causes some encoding overhead due
to a lack of interoperability with built-in data types. Furthermore, the connection with the
underlying categorical concepts that motivate these embeddings remains implicit. By keeping
the motivating concepts implicit, our programs lack a rigorously defined formal semantics,
but we also introduce further encoding overhead. That is, we usually have to define typeclass
instances or work with a universe construction [1] to ensure that signatures are indeed functorial.
This work. We advocate an alternative approach that makes the functional programmer’s
modularity toolkit—e.g., functors, folds, fixpoints, etc.—part of the language’s design. We
believe that this has the potential to address the issues outlined above. By incorporating these
elements into a language’s design we have the opportunity to develop more convenient syntax
for working with extensible data types (see e.g. the authors’ previous work [13]), and by defining
a formal semantics we maintain a tight connection between the used modularity abstractions
and the concepts that motivate these constructs. The aim of this work is to present a core
calculus that acts as a minimal basis for capturing the modularity abstractions discussed here,
as well as to develop a formal categorical semantics for this calculus.
Calculus Design and Semantics. We present a (non-dependently typed) λ-calculus with
kinds and Hindley-Milner style polymorphism. Types are restricted such that any higher-order
type expression is by construction a functor in all its arguments, effectively making the concept
of functors first-class in the language’s design. By imposing this additional structure, we can
provide the programmer with several additional primitives that can be used to capture the
aforementioned modularity abstractions, while simultaneously keeping a closer connection to
the categorical semantics of these abstractions. Well-formedness of types is defined as usual
for the first-order fragment of System Fω, the only salient difference being that we maintain
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a separate context, Φ, containing the free variables that a type expression is intended to be
functorial in. Type-level λ-abstraction adds a new binding to Φ, and we discard all functorial
variables in the domain of a function to enforce that the variables in Φ are only used covariantly:

∆ | Φ, (X 7→ k1) ` τ : k2

∆ | Φ ` λX.τ : k1  k2

∆ | ∅ ` τ1 : ? ∆ | Φ ` τ2 : ?

∆ | Φ ` τ1 ⇒ τ2 : ?

This ensures that all higher-order types have a semantics as objects in an appropriate functor
category. The variables in ∆ have mixed variance and are bound by universal quantification.

The functor semantics of a type τ : k1  k2 guarantees that we can map over values of
type τ , provided we have a way to transform the argument type. We expose this ability to the
programmer by adding a general mapping primitive to the calculus:

∆ | ∅ ` τ : k1  k2 Γ `M : τ1
k1−→ τ2

Γ `mapτ (M) : τ τ1
k2−→ τ τ2

σ
?−→ τ = σ ⇒ τ

σ
k1 k2−→ τ = ∀α. σ(α) k2−→ τ(α)

We use the syntax τ1
k−→ τ2 to denote a (polymorphic) function that universally closes over all

type arguments of τ1 and τ2, provided that they have the same kind.
Generally speaking, the intended semantics of a terms is a natural transformation between

functors over a bicartesian closed category C. We reify this underlying categorical structure
through primitives such as map. Other examples of such primitives are operations for destruc-
ting fixpoints or co-products:

T-Fold
Γ `M : τ1(τ2)

k−→ τ2

Γ ` foldτ1(M) : µ(τ1)
k−→ τ2

T-Join
Γ `M : τ1

k−→ τ Γ `M : τ2
k−→ τ

Γ `M H N : τ1 ⊕ τ2 k−→ τ

To justify these operations we must argue that terms of type τ1
k−→ τ2 represent morphisms in

the (functor) category associated with k.
As an example, we compare definitions of the free monad in our calculus (l) and Haskell (r):

Free , λF.λA.µX.A⊕ F (X) data Free f a = Pure a | In (f (Free f a))

Free is well-formed with kind (?  ?)  ?  ?. Consequently, it is by construction a functor
in both type arguments, guaranteeing that we can always map over either of its arguments:

mapFree(γ)(f) : ∀α.∀β.∀γ.Free(γ)(α)⇒ Free(γ)(β) where f : α⇒ β

mapFree(f) : ∀α.∀γ1.∀γ2.Free(γ1)(α)⇒ Free(γ2)(α) where f : ∀α.γ1(α)⇒ γ2(α)

In Haskell, we would require dedicated instances to witness that Free is a (higher-order) functor.
Existing Work. There is some previous work that attacks similar problems [9, 3], but to
the best of our knowledge no existing language design can capture the modularity abstractions
discussed in this abstract and has a clearly defined categorical semantics. Closest to our work,
and a major source of inspiration, is a calculus developed by Johann al. [6, 5] for studying
parametricity for nested data types [2]. Still, there are some key differences: in their setting
universal quantification is limited to zero-argument types, and the semantics is tied to the
category of sets, and relies on an additional interpretation of types as relations.
Conclusion. We have designed a calculus that demonstrates how support for type-safe mod-
ularity can be integrated into a programming language’s design in a principled way, which we
intend as a stepping stone for designing functional languages with better facilities for type-safe
modularity. We are finalizing the semantic model that relates this support for modularity to
the categorical concepts that motivate it.
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Dealing with logical independence. There are several important logical principles known to be
independent of intensional Martin-Löf type theory (ITT), such as uniqueness of identity proofs (UIP),
functional and propositional extensionality and univalence (which is incompatible with UIP but entails
the two extensionality principles) [1, 2, 3].

When proving a statement in a specific theory, we may distinguish two basic approaches to dealing
with such an independent principle: The axiomatic approach – adding the principle as an axiom to the
theory; and the local approach – adding assumptions to statements. The axiomatic approach implicitly
restricts the models of the theory in which the proof holds, while the local approach restricts the internal
applicability of the statement. As an example, consider the choice between either adding UIP to ITT
or working with h-sets [4] instead of arbitrary types. In the following, we are interested in a principle
which has arisen from a local approach to dealing with functional extensionality :1 which as an axiom
would read

funExt : {A,B :Type } → {f , g :A→ B } → f
.
= g → f = g

(where we write f
.
= g for extensional equality (a :A)→ f a = g a of the functions f and g , and (=) is

the standard intensional equality). Extensional equality is relevant in many contexts. For example when
reasoning about generic programs in the style of the Algebra of Programming [6, 7], one is interested
in program transformations that preserve the observable behaviour of programs. Our approach treads a
middle ground between postulating funExt or using a more general setoid -based framework [8, 9] like,
e.g., [10, 11, 12].2

Preservation of extensional equality for functors. For a function F :Type → Type to be a functor
(in the usual functional programming sense, considering Type as a category with types as objects and
functions as morphisms), another function

map : {A,B :Type } → (A→ B)→ F A→ F B

is required that preserves identity and function composition. To even state these properties of map,
one needs a notion of equality of functions. Extensional equality is arguably the most reasonable choice
(see e.g. discussions in [14, Sec. 3] and [15]) but straight away leads to consider a further preservation
property, namely that map preserves extensional equality :

mapPresEE :Functor F ⇒ {A,B :Type } → (f , g :A→ B)→ f
.
= g → map f

.
= map g

This principle has been used by Matthes [16] in the context of representing nested datatypes in ITT.3

We have studied the mapPresEE principle from a more pragmatic perspective in [14], and advocated for
its use(fulness) to reason about generic programs in ITT (see also [17, 18]).4 For example, we showed
that it is crucial to generically relate different representations of monads.

In presence of functional extensionality, mapPresEE is uniformly derivable in ITT for any functor.
Concrete instances of mapPresEE are however also derivable without assuming full-fledged functional
extensionality, as shown in [14] (concrete examples can also be found in the standard libraries of Agda
and Coq, e.g. for Maybe or List). Still – as discussed in [14] for the example of the Reader functor (with
Reader E A = E → A) and its map function

mapR : {E ,A,B :Type } → (f :A→ B)→ Reader E A→ Reader E B
mapR f r = f ◦ r

1We are using Idris [5] as host language but any other syntax for ITT would do as well.
2Yet another approach to dealing with funExt “(non-)computationally” (in Agda) is discussed in [13].
3We are very grateful to the reviewer who pointed us to Matthes’ usage of mapPresEE that we had been unaware of.
4The sources of [14] can be found at [19], where we will also upload updates on the current development.
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– there are also functors for which proving mapPresEE without funExt seems (and is indeed, see below)
impossible. And yet, for Reader , a variant of mapPresEE for a two-argument version of extensional
equality

(
..
=) : {A,B ,C :Type } → (f , g :A→ B → C )→ Type

(
..
=) f g = (a :A)→ f a

.
= g a

mapRPresEE2 : {E ,A,B :Type } → (f , g :A→ B)→ f
.
= g → mapR f

..
= mapR g

mapRPresEE2 f g fEEg r a = fEEg (r a)

is easily derivable (which, however, rather is a transformation between two notions of equality than a
preservation). This suggests that exploring the interaction of map with extensional equality allows to
make fine-grained distinctions between classes of endofunctors on Type, and leads us to ask:

• Can we characterise the class of functors for which mapPresEE holds?

• Can we prove that this class is a proper subclass of the class of all functors, i.e., that mapPresEE
is independent from ITT? Can we make its relation to funExt more precise?

• How do analogues of the mapPresEE principle for lifted versions of extensional equality interact
with functional extensionality?

We are currently working on these questions and can give some preliminary answers.

Characterising mapPresEE -functors. The second author has proved that for any T :Type → Type
which is a Traversable functor [20, 21], i.e. can be equipped with a function

traverse : (G :Type → Type)→ Applicative G ⇒
{A,B :Type } → (A→ G B)→ T A→ G (T B)

satisfying some properties, mapPresEE is derivable in ITT with η-equality. The basic observation is that
the type of pairs of extensionally equal functions from A to B , Σ (A→ B ,A→ B) (λp ⇒ π1 p

.
= π2 p),

is isomorphic to the type of functions from A to B=, the free path space (cf. [22, Remark 1.12.1]) over B .
The free path space construction ( - )= (trivially) is an Applicative [20] functor and traverse ( - )= proves
mapPresEE .

Independence of mapPresEE from ITT and relation to funExt. Revisiting the Reader example
above, it has been observed by the first author that a first level mapPresEE for mapR which is poly-
morphic in Reader ’s first argument E is logically equivalent to funExt . If Reader is specialised to a
particular type E , the principle is logically equivalent to a local version of functional extensionality for
functions with domain E . (Both results require η-equality.) Similar results can be obtained for variants
of map for indexed functions or contravariant functors.

Principles for lifted equalities. We have seen that for Reader and mapR, a principle similar to
mapPresEE is provable using a notion of extensional equality for functions with two arguments. The
lifting of a binary relation can be done systematically by iterating the function

extify :{A,B :Type } → (B → B → Type)→ ((A→ B)→ (A→ B)→ Type)
extify {A} relB f g = (a :A)→ relB (f a) (g a)

such that (
.
=) corresponds to extify (=), (

..
=) corresponds to extify (

.
=), and so on. The Reader example

we have seen above suggests that there is an interaction between the number of function arguments and
the “level” of extensional equality for which a mapPresEE -like principle is provable. Indeed, analogues of
mapPresEE2 above are provable for n-argument versions of Reader with arbitrary n :N (i.e. n-argument
function types). In the presence of product/Σ-types we can reduce an n-argument function to a 1-
argument function via uncurrying. But since the interaction of extensional equality with the function
space constructor has a distinctively syntactical flavour, it still seems worthwhile to consider generalisa-
tions for n :N (with context types E1, ...,En left implicit)

mapRTransfEEn : {A,B :Type } → (f , g :A→ B)→ f
.
= g → mapRn f

n
= mapRn g

such that mapPresEE for mapR arises as mapRTransfEE 1 (with (
n
=) as n-th iteration of extify). Taking

a closer look at this family, we see that mapRTransfEE 0 is equivalent to funExt . Instances for n>0 only
prove “localised” versions of function extensionality.
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[3] Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. The next 700 syntactical models of type theory.
In ACM SIGPLAN Conf. on Certified Programs and Proofs, CPP 2017, pages 182–194. ACM, 2017.

[4] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath — a computer-checked library of
univalent mathematics. Available at https://github.com/UniMath/UniMath, 2021.

[5] Edwin Brady. Type-Driven Development in Idris. Manning Publications Co., 2017.

[6] Richard S. Bird and Oege de Moor. Algebra of programming. Prentice Hall International Series in Computer
Science. Prentice Hall, 1997.

[7] Shin-Cheng Mu, Hsiang-Shang Ko, and Patrik Jansson. Algebra of programming in Agda: dependent types
for relational program derivation. Journal of Functional Programming, 19(5):545–579, 2009.

[8] Errett Bishop. Foundations of Constructive Analysis. McGraw-Hill, 1967.

[9] Martin Hofmann. Extensional concepts in intensional type theory. PhD thesis, University of Edinburgh,
1995.

[10] Bas Spitters and Vincent Semeria (Maintainers). Coq Repository at Nijmegen (Version 1.2.0). https:

//github.com/coq-community/corn, 2017.

[11] Fredédéric Blanqui and Adam Koprowski. CoLoR: a Coq library on well-founded rewrite relations and its
application to the automated verification of termination certificates. Mathematical Structures in Computer
Science, 21(4):827–859, 2011.

[12] Jason Z. S. Hu and Jacques Carette. Formalizing category theory in Agda. In ACM SIGPLAN Conference
on Certified Programs and Proofs, CPP 2021, pages 327–342, New York, NY, USA, 2021.

[13] Chuangjie Xu. Using function extensionality in agda, (non-)computationally. https://cj-xu.github.io/

talks/xu-funext.pdf, 2017.

[14] Nicola Botta, Nuria Brede, Patrik Jansson, and Tim Richter. Extensional equality preservation and verified
generic programming. Journal of Functional Programming, 31:e24, 2021.

[15] Nicholas Drozd et al. Proposal: Verify algebra interfaces by default. Discussion on idris-lang https:

//groups.google.com/forum/#!topic/idris-lang/VZVpi-QUyUc, 2020.

[16] Ralph Matthes. An induction principle for nested datatypes in intensional type theory. Journal of Functional
Programming, 19(3-4):439–468, 2009.

[17] Nuria Brede and Nicola Botta. On the correctness of monadic backward induction. Journal of Functional
Programming, 31:e26, 2021.

[18] Patrik Jansson. FP talk on Extensional equality preservation. https://www.youtube.com/watch?v=

tvpjuQyPYXI, 2020.

[19] Nicola Botta et al. Sources and accompanying code of recent papers. https://gitlab.pik-potsdam.de/

botta/papers, 2020–2023.

[20] Conor McBride and Ross Paterson. Applicative programming with effects. Journal of Functional Program-
ming, 18(1):1–13, January 2008.

[21] Mauro Jaskelioff and Ondrej Rypacek. An investigation of the laws of traversals. In James Chapman and
Paul Blain Levy, editors, Proceedings Fourth Workshop on Mathematically Structured Functional Program-
ming, MSFP@ETAPS 2012, Tallinn, Estonia, 25 March 2012, volume 76 of EPTCS, pages 40–49, 2012.

[22] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics.
https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

207



Composable partial functions in Coq, totally for free

Théo Winterhalter

Inria, France

I propose an early-stage Coq [Coq23] library1 for general recursion. The goal is to be able
to able to write functions that may be only partially defined and still prove things about them.
This work follows in the footsteps of ‘Turing-completeness totally free’2 [McB15] and the Braga
method [LM21]. Indeed, we use a free monad to represent general recursion that is close to the
former and we can instantiate it to total functions that can be extracted using ideas similar to
the latter. Crucially, this library supports composition of such functions at virtually no cost.

Let us look at the simple example of integer division div (n, m) which returns ⌈ nm⌉ by counting
the number of times it can subtract m to n before reaching 0. There are two obstacles to writing
this function directly in Coq: (1) this function is not defined when m = 0 ; (2) Coq will fail3 to
see that n − m is structurally smaller than n when checking that the function is terminating. So,
instead of defining some function of type ∀ (n m : N), N we can use the library’s partial function
type ∇ (p : N ∗ N), N. Below, we define the function in a rather straightforward way, using the
Equations plugin [SM19a; SM19b] to get a nice syntax.

Equations div : ∇ (p : N ∗ N), N :=
div (0, m) := ret 0 ;
div (n, m) := q ← rec (n − m, m) ;; ret (S q).

Aside from the explicit monadic operations ret and rec, this should look as expected. ret

is just the monadic return that lets you. . . return a value. rec is the operation that lets you
perform a recursive call, the second branch is thus to be understood as S (div (n − m, m)).

Compositionality. One of problems found in literature is the lack of compositionality. With
this library it is seamless as you can see in the following (silly) function for testing divisibility.

Equations test_div : ∇ (p : N ∗ N), B :=
test_div (n, m) := q ← call div (n, m) ;; ret (q ∗ m =? n).

Herein, we use the call operation that is similar to rec but additionally expects a partial
function. In fact, call is quite flexible in term of partial functions: f can be called as long as
the class PFun f can be inferred. This class records various informations such as the domain,
codomain, etc. of f, i.e. all the information required to construct actual (total) functions. What
makes this example well typed is that for each f : ∇ (x : A), B we have an instance of PFun f.
This call operator takes away the need to do complex encodings and makes it customisable
(nothing prevents us e.g. to declare an instance of PFun for a total function).

Partial functions at work. Of course, merely describing partial functions isn’t satisfactory
in itself. We want to be able to run them, be it within Coq itself, or after extraction. All of this
we get for free, once and for all. From a user perspective we simply have to use combinators.
For instance, we can write div @ (10, 5) to apply div to 10 and 5 and obtain a value of type N.
Note the absence of option or any possibility of failure, we got ourselves a natural number. Of
course the function did not magically become total or started returning garbage. If we were to

1Available at https://github.com/TheoWinterhalter/coq-partialfun/tree/types2023.
2Any resemblance to this title is entirely coincidental.
3And rightly so when m = 0.
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write div @ (10, 0) instead, we would simply get an error from Coq, it wouldn’t be well typed.
So, how does this work? Under the hood we actually use two interpretations of div:

fueled div : ∀ (n : N) (p : N ∗ N), Fueled N def div : ∀ (p : N ∗ N), domain div p → N

fueled produces a version that performs structural recursion on its first argument n, called
fuel. It represents the depth of recursive calls that can be performed when evaluating the
partial function. If the fuel is exhausted before getting to a value, the whole function returns
NotEnoughFuel, otherwise it returns Success v for some value v. def on the other hand always
returns a value in N, but its application is guarded by a proof that its argument is in the domain
of the function. We define it as domain f x := ∃ v, graph f x v where the graph is defined as an
inductive predicate (thus posing no termination problem).

Now, the trick to be able to write div @ (10, 5) : N is to call def div with a proof that (10, 5)

is its domain computed from fueled div (10, 5), or rather from the fact that it is a Success. It
however has its limitations because we pick a value of fuel once and for all, and besides this
will only work for concrete values for the argument and not for variables.

Functional induction. Executing partial functions is good, but we also want to be able to
reason about such programs. To this end we provide a functional induction predicate as follows:

funind : (∇ (x : A), B) → (A → Prop) → (∀ x, B x → Prop) → Prop

so that funind f P Q states that for all input x verifying P x, corresponding outputs v will verify
Q x v. This fact is proven about the graph of f, but also about fuled f and def f. For instance
we can prove about div that it preserves the invariant that inputs (n, m) with n < m return 0 if
n = 0 and otherwise 1.

funind div (λ ’(n, m), n < m) (λ ’(n, m) q, match n with 0 ⇒ q = 0 | _ ⇒ q = 1 end).

Proving this lemma requires no internal knowledge of the library which contributes to the
aimed ‘for-free’ experience. Similarly, the library provides a way to easily prove domain without
exposing its internals: instead of reasoning on the graph, we can simply reason about recursive
calls. For div it becomes easy to prove ∀ n m, (n = 0 ∨ m ̸= 0) ↔ domain div (n, m).

Related work. This line of work is of course not new. I already mentioned the work of
McBride [McB15] who proposes a dependent general recursion monad that is very close to this
one, except it does not readily support composition to the best of my knowledge. Prior work
from Bove and Capretta [BC05] also suffered from this issue, but already laid the grounds for
representing partial functions as total functions in Agda. Larchey-Wendling and Monin [LM21]
went along the same direction, further proposing ways to make such programs suitable for
extraction. In a sense, my proposal is a composition of these works by essentially applying the
Braga method to a program written in the general recursion monad, as well as an extension to
support composition of functions in a neat way.

Future work. My initial motivation for this library is to be able to be able to prove properties
about the type checker of Coq written in the MetaCoq project [Soz+20b; Soz+20a] without
having to rely on a strong normalisation axiom. Especially when this axiom might be violated
by further extensions of (Meta)Coq such as user-defined rewrite rules.

Another direction I find very interesting and which was already proposed by Larchey-
Wendling and Monin [LM21] would be to integrate this machinery directly within Equations.
This would make it possible to hide the monad and make for an actual seamless experience.
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Liquid Haskell [7] is a refinement type checker for Haskell programs that can also be used
as a theorem prover to mechanically check user-provided proofs. For example, it has been
used to mechanize proofs about equational reasoning [6], relational properties [5], and program
security [3]. These case studies demonstrate that mechanically checking theorems using Liquid
Haskell is possible, but they illustrate two main disadvantages. First, the foundations of Liquid
Haskell as a theorem prover have neither been well studied nor formalized. Second—and more
pressingly—although Liquid Haskell can check proofs, it does not assist in their development.
That is, when a fully automatic the proof fails, the proof engineer can’t directly inspect the
proof at the point of failure—making it difficult to further develop the proof. We can address
both disadvantages at once by translating Liquid Haskell proofs to Coq. To understand this
translation, we started by encoding the Ackermann function and related arithmetic theorems
in Liquid Haskell and in (to-be-automatically-derived) Coq. In this abstract, we present how
we aim to translate the four main ingredients of Liquid Haskell functions and proofs.

1. Refinement Types =⇒ Subset Types Refinement types are types refined with logical
predicates. For example, Nat

.
= {v : Int | 0 ≤ v} is the type of integers refined to be natural

numbers. Liquid Haskell’s refinements are dependent types: n : Int → {v : Int | n ≤ v} is
the type of a function that increases its integer argument. We could encode refinement types
in Coq two ways: inductive predicates or subset types. While Coq works more easily with
inductive predicates, they are not a good choice for us: they do not permit “breaking the
invariants”. Suppose n : Nat and m : {v : Int | 1 ≤ v}. Refinement types can easily show that
(n−1)+m : Nat, even though n−1 can be negative. In order to separate values and operations
from their properties, we encode refinement types as subset types.

In Coq, an element of the subset type {v : b | p v} is a pair (e, q) of an expression e and a
proof that p e holds. In Liquid Haskell, an element of a subset type is just the expression e.
Our translation’s primary challenge is to fill in the proof terms.

2. Reflection & Termination Metrics =⇒ Equations & Induction Principles Liquid
Haskell uses a termination checker to ensure user defined functions terminate—Liquid Haskell
can only reason safely about terminating functions. When termination is not structurally
obvious, termination metrics let us check semantic termination. For example, the metric /

[m,n] below expresses that ack m n should use lexicographic ordering on its arguments; Liquid
Haskell will check that the metric is well founded.

{-@ ack :: m:Nat -> n:Nat -> Nat / [m,n] @-}

ack 0 n = n + 1

ack m n = if n == 0 then ack (m-1) 1 else ack (m-1) (ack m (n-1))

Terminating functions can be reflected [8] in the refinement logic. The annotation {-@ reflect

ack @-} reflects the Ackermann function, which in practice means that ack can appear in the
refinements and that the logic “knows” the function’s definition—so we can more easily write
and prove theorems about ack. For example, the theorems below state that ack is monotonic;
their (omitted) proofs are Haskell functions that inhabit the types. (The type {p} is really
{v : () | p}, a refinement of unit used as a notion of proposition.)

{-@ monotonic_one :: m:Nat -> n:Nat -> {ack m n < ack m (n+1)} @-}

{-@ monotonic :: m:Nat -> n:Nat -> p:{Nat | p < n } -> {ack m p < ack m n} / [n] @-}
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We use Coq’s Equations [4] to define functions that are not obviously terminating. Coq’s
Fixpoint only permits structural induction, while Program Fixpoint provides opaque func-
tions. We use Equations to encode functions like Ackermann’s in Coq, yielding both the
function’s definition and its Equations-generated induction principle.

3. Implicit Semantic Subtyping =⇒ Custom Tactics Liquid Haskell implicitly uses
subtyping to weaken the types of expressions to their appropriate subtypes. Such subtyping
occurs in two program locations: join points and function applications. For example, to type if
p then 2 else 4 as Nat, the singleton branch types {v : Int | v = 2} and {v : Int | v = 4} will
both be weakened to Nat via implicit subtyping. Similarly, typing of f 4, where f : Nat→ Int,
succeeds because of implicit subtyping in the argument.

We created ref tacts, a new suite of tactics, to simulate Liquid Haskell’s implication check-
ing. At join points, we use the my trivial tactic emulates what is trivial for Liquid Haskell’s
logic, including destruction and lia’s arithmetic. At function applications, the reft pose tac-
tic does a bit more: (1) it grabs the function’s preconditions, (2) it proves that the arguments
satisfy them, and, critically (3) it makes the proof term inside the argument opaque so that
it does not clutter the proof environment. Note that functions arguments have correct subset
types—but those types may not be the function’s domain type. Part of reft pose’s job is to
‘upcast’ arguments to satisfy the function domain’s preconditions.

4. SMT & Proof by Logical Evaluation (PLE) =⇒ Sniper How do we define
ref tacts? Liquid Haskell resolves semantic subtyping’s implications by an SMT solver. SMT
solvers know all kinds of things—notably, linear arithmetic. Consider this proof of monotonic:

monotonic m n p | n == p + 1 = monotonic_one m p

| otherwise = ack m p ? monotonic m (n-1) p

=<< ack m (n-1) ? monotonic_one m (n-1)

=<< ack m n *** QED

The goal is to prove that ack m p < ack m n. In the base case, where n == p + 1, the proof
concludes by ack m p < ack m (p+1). In the inductive case, we use Liquid Haskell’s combi-
nators to build the proof. First, we call the inductive hypothesis monotonic m (n-1) p to find
ack m p < ack m (n-1). Next, monotonic one lets us find ack m (n-1) < ack m n. The
proof concludes by linear arithmetic and transitivity of (<), which SMT knows.

Using lia to translate the proof above to Coq is easy. Unfortunately, we must explicitly
use transitivity of <... even though transitivity is ‘free’ in SMT!

Proof translation becomes still more challenging Proof by Logical Evaluation [8] (PLE). PLE
evaluates expressions in the SMT solver itself, substantially shrinking Liquid Haskell proofs—
one need only invoke lemmas. For example, with PLE, the inductive case of monotonic could
be monotonic m (n-1) p ? monotonic one m (n-1). Translating this simpler proof calls
for proof search, since intermediate term for transitivity (ack m (n-1)) has vanished.

Happily, the recently developed Sniper [2] tactic gracefully combines both SMT knowledge
and proof search. Sniper provides general proof automation and combines SMTCoq [1] with
general Coq tactics. We conjecture that sniper would be ideal for our Liquid Haskell to Coq
translation. In order to apply Sniper in our setting, we must extend it to support equations
and subset types that—critical parts of our translation.

Conclusion We aim to translate Liquid Haskell to Coq. Early experiments have produced
workable translations of types, functions, subtyping, and Liquid Haskell’s refinement logic.
Sniper [2] offers a promising way forward, once it can reason properly about subset types.
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